298
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1273-1291 | Received 21 Jan 2022, Accepted 25 Aug 2022, Published online: 10 Sep 2022

References

  • Waxenbaum JA, Reddy V, Varacallo M. Anatomy, Autonomic Nervous System. Available from. Treasure Island (FL): StatPearls Publishing;2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539845/. Accessed August 26, 2022.
  • Maier SF, Goehler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci. 1998;840:289–300. doi:10.1111/j.1749-6632.1998.tb09569.x
  • Wilson SR, Thé L, Batia LM, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–295. doi:10.1016/j.cell.2013.08.057
  • Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity. Immunity. 2015;43(3):515–526. doi:10.1016/j.immuni.2015.08.016
  • Lee S, Jo S, Talbot S, et al. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife. 2019:8. doi:10.7554/eLife.48118
  • Nockher WA, Renz H. Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol. 2006;117(3):583–589. doi:10.1016/j.jaci.2005.11.049
  • Oetjen LK, Kim BS. Interactions of the immune and sensory nervous systems in atopy. FEBS J. 2018;285(17):3138–3151. doi:10.1111/febs.14465
  • Frieri M. Neuroimmunology and inflammation: implications for therapy of allergic and autoimmune diseases. Ann Allergy Asthma Immunol. 2003;90(6 Suppl 3):34–40. doi:10.1016/s1081-1206(10)61658-4
  • Bienenstock J, Perdue M, Blennerhassett M, et al. Inflammatory cells and the epithelium. Mast cell/nerve interactions in the lung in vitro and in vivo. Am Rev Respir Dis. 1988;138(6 Pt 2):S31–4. doi:10.1164/ajrccm/138.6_Pt_2.S31
  • Kiernan JA. Degranulation of mast cells in the trachea and bronchi of the rat following stimulation of the vagus nerve. Int Arch Allergy Appl Immunol. 1990;91(4):398–402. doi:10.1159/000235149
  • Greene R, Fowler J, MacGlashan DJ, Weinreich D. IgE-challenged human lung mast cells excite vagal sensory neurons in vitro. J Appl Physiol. 1988;64(5):2249–2253. doi:10.1152/jappl.1988.64.5.2249
  • Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97(3):575–585. doi:10.1016/0016-5085(89)90627-6
  • Williams RM, Berthoud HR, Stead RH. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation. 1997;4(5–6):266–270. doi:10.1159/000097346
  • Crosson T, Wang JC, Doyle B, et al. FcεR1-expressing nociceptors trigger allergic airway inflammation. J Allergy Clin Immunol. 2021;147(6):2330–2342. doi:10.1016/j.jaci.2020.12.644
  • van der Kleij H, Charles N, Karimi K, et al. Evidence for neuronal expression of functional Fc (epsilon and gamma) receptors. J Allergy Clin Immunol. 2010;125(3):757–760. doi:10.1016/j.jaci.2009.10.054
  • Undem BJ, Clark TT. Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol. 2014;133(6):1521–1534. doi:10.1016/j.jaci.2013.11.027
  • Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev. 2020;100(1):357–405. doi:10.1152/physrev.00033.2018
  • Dekker E, Pelser HE, Groen J. Conditioning as a cause of asthmatic attacks; a laboratory study. J Psychosom Res. 1957;2(2):97–108. doi:10.1016/0022-3999(57)90015-6
  • Dark K, Peeke HV, Ellman G, Salfi M. Behaviorally conditioned histamine release. Prior stress and conditionability and extinction of the response. Ann N Y Acad Sci. 1987;496:578–582. doi:10.1111/j.1749-6632.1987.tb35816.x
  • Gauci M, Husband AJ, Saxarra H, King MG. Pavlovian conditioning of nasal tryptase release in human subjects with allergic rhinitis. Physiol Behav. 1994;55(5):823–825. doi:10.1016/0031-9384(94)90066-3
  • Goebel MU, Meykadeh N, Kou W, Schedlowski M, Hengge UR. Behavioral conditioning of antihistamine effects in patients with allergic rhinitis. Psychother Psychosom. 2008;77(4):227–234. doi:10.1159/000126074
  • Vits S, Cesko E, Benson S, et al. Cognitive factors mediate placebo responses in patients with house dust mite allergy. PLoS One. 2013;8(11):e79576. doi:10.1371/journal.pone.0079576
  • Wechsler ME, Kelley JM, Boyd IOE, et al. Active albuterol or placebo, sham acupuncture, or no intervention in asthma. N Engl J Med. 2011;365(2):119–126. doi:10.1056/NEJMoa1103319
  • Exton MS, Elfers A, Jeong WY, Bull DF, Westermann J, Schedlowski M. Conditioned suppression of contact sensitivity is independent of sympathetic splenic innervation. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1310–5. doi:10.1152/ajpregu.2000.279.4.R1310
  • Konno A, Togawa K. Role of the vidian nerve in nasal allergy. Ann Otol Rhinol Laryngol. 1979;88(2 Pt 1):258–266. doi:10.1177/000348947908800219
  • Baroody FM, Wagenmann M, Naclerio RM. Comparison of the secretory response of the nasal mucosa to methacholine and histamine. J Appl Physiol. 1993;74(6):2661–2671. doi:10.1152/jappl.1993.74.6.2661
  • Philip G, Jankowski R, Baroody FM, Naclerio RM, Togias AG. Reflex activation of nasal secretion by unilateral inhalation of cold dry air. Am Rev Respir Dis. 1993;148(6 Pt 1):1616–1622. doi:10.1164/ajrccm/148.6_Pt_1.1616
  • Sanico AM, Philip G, Lai GK, Togias A. Hyperosmolar saline induces reflex nasal secretions, evincing neural hyperresponsiveness in allergic rhinitis. J Appl Physiol. 1999;86(4):1202–1210. doi:10.1152/jappl.1999.86.4.1202
  • Sanico AM, Koliatsos VE, Stanisz AM, Bienenstock J, Togias A. Neural hyperresponsiveness and nerve growth factor in allergic rhinitis. Int Arch Allergy Immunol. 1999;118(2–4):154–158. doi:10.1159/000024054
  • Riccio MM, Proud D. Evidence that enhanced nasal reactivity to bradykinin in patients with symptomatic allergy is mediated by neural reflexes. J Allergy Clin Immunol. 1996;97(6):1252–1263. doi:10.1016/s0091-6749(96)70193-8
  • Anton F, Peppel P. Central projections of trigeminal primary afferents innervating the nasal mucosa: a horseradish peroxidase study in the rat. Neuroscience. 1991;41(2–3):617–628. doi:10.1016/0306-4522(91)90354-q
  • Baraniuk JN. Sensory, parasympathetic, and sympathetic neural influences in the nasal mucosa. J Allergy Clin Immunol. 1992;90(6 Pt 2):1045–1050. doi:10.1016/0091-6749(92)90121-h
  • Wallois F, Macron JM, Jounieaux V, Duron B. Trigeminal afferences implied in the triggering or inhibition of sneezing in cats. Neurosci Lett. 1991;122(2):145–147. doi:10.1016/0304-3940(91)90843-i
  • Jackson RT, Rooker DW. Stimulation and section of the vidian nerve in relation to autonomic control of the nasal vasculature. Laryngoscope. 1971;81(4):565–569. doi:10.1288/00005537-197104000-00007
  • Lisney SJW, Bharali LAM. The Axon Reflex: an Outdated Idea or a Valid Hypothesis? Physiology. 1989;4(2):45–48. doi:10.1152/physiologyonline.1989.4.2.45
  • McDonald DM, Mitchell RA, Gabella G, Haskell A. Neurogenic inflammation in the rat trachea. II. Identity and distribution of nerves mediating the increase in vascular permeability. J Neurocytol. 1988;17(5):605–628. doi:10.1007/BF01260989
  • McDonald DM. Neurogenic inflammation in the rat trachea. I. Changes in venules, leucocytes and epithelial cells. J Neurocytol. 1988;17(5):583–603. doi:10.1007/BF01260988
  • Baraniuk JN, Kaliner M. Neuropeptides and nasal secretion. Am J Physiol. 1991;261(4 Pt 1):L223–35. doi:10.1152/ajplung.1991.261.4.L223
  • Baluk P, Bertrand C, Geppetti P, McDonald DM, Nadel JA. NK1 receptors mediate leukocyte adhesion in neurogenic inflammation in the rat trachea. Am J Physiol. 1995;268(2 Pt 1):L263–9. doi:10.1152/ajplung.1995.268.2.L263
  • Revington M, Lacroix JS, Potter EK. Sympathetic and parasympathetic interaction in vascular and secretory control of the nasal mucosa in anaesthetized dogs. J Physiol. 1997;505(Pt 3):823–831. doi:10.1111/j.1469-7793.1997.823ba.x
  • Yao W, Sheikh SP, Ottesen B, Jørgensen JC. The effect of neuropeptides on vessel tone and cAMP production. Ann N Y Acad Sci. 1996;805:784–788. doi:10.1111/j.1749-6632.1996.tb17557.x
  • El-Shazly AE, Begon DY, Kustermans G, et al. Novel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways. J Biol Chem. 2013;288(2):1374–1384. doi:10.1074/jbc.M112.422675
  • Shiraishi Y, Asano K, Nakajima T, et al. Prostaglandin D2-induced eosinophilic airway inflammation is mediated by CRTH2 receptor. J Pharmacol Exp Ther. 2005;312(3):954–960. doi:10.1124/jpet.104.078212
  • Royer JF, Schratl P, Lorenz S, et al. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst. Allergy. 2007;62(12):1401–1409. doi:10.1111/j.1398-9995.2007.01452.x
  • Uller L, Mathiesen JM, Alenmyr L, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir Res. 2007;8(1):16. doi:10.1186/1465-9921-8-16
  • Nomiya R, Okano M, Fujiwara T, et al. CRTH2 plays an essential role in the pathophysiology of Cry j 1-induced pollinosis in mice. J Immunol. 2008;180(8):5680–5688. doi:10.4049/jimmunol.180.8.5680
  • Downey GP. Mechanisms of leukocyte motility and chemotaxis. Curr Opin Immunol. 1994;6(1):113–124. doi:10.1016/0952-7915(94)90042-6
  • Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood. 1995;86(5):1649–1660.
  • Bacon KB, Szabo MC, Yssel H, Bolen JB, Schall TJ. RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells. J Exp Med. 1996;184(3):873–882. doi:10.1084/jem.184.3.873
  • Knall C, Worthen GS, Johnson GL. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci U S A. 1997;94(7):3052–3057. doi:10.1073/pnas.94.7.3052
  • Okita W, Ichimura K. Contribution of nitric oxide and sensory transmitters to non-adrenergic, non-cholinergic innervation of nasal blood vessels. Acta Otolaryngologica Supplementum. 1998;539:76–78. doi:10.1080/00016489850182189
  • Lacroix JS. Adrenergic and non-adrenergic mechanisms in sympathetic vascular control of the nasal mucosa. Acta Physiol Scand Suppl. 1989;581:1–63.
  • Kawarai M, Koss MC. Sympathetic control of nasal blood flow in the rat mediated by alpha(1)-adrenoceptors. Eur J Pharmacol. 2001;413(2–3):255–262. doi:10.1016/s0014-2999(01)00759-2
  • Wang M, Lung MA. Adrenergic mechanisms in canine nasal venous systems. Br J Pharmacol. 2003;138(1):145–155. doi:10.1038/sj.bjp.0705020
  • Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317. doi:10.1146/annurev.ne.19.030196.001445
  • Raap U, Goltz C, Deneka N, et al. Brain-derived neurotrophic factor is increased in atopic dermatitis and modulates eosinophil functions compared with that seen in nonatopic subjects. J Allergy Clin Immunol. 2005;115(6):1268–1275. doi:10.1016/j.jaci.2005.02.007
  • Bresciani M, Lalibertè F, Lalibertè MF, Gramiccioni C, Bonini S. Nerve growth factor localization in the nasal mucosa of patients with persistent allergic rhinitis. Allergy. 2009;64(1):112–117. doi:10.1111/j.1398-9995.2008.01831.x
  • Wu X, Myers AC, Goldstone AC, Togias A, Sanico AM. Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol. 2006;118(2):428–433. doi:10.1016/j.jaci.2006.04.037
  • Raap U, Fokkens W, Bruder M, Hoogsteden H, Kapp A, Braunstahl GJ. Modulation of neurotrophin and neurotrophin receptor expression in nasal mucosa after nasal allergen provocation in allergic rhinitis. Allergy. 2008;63(4):468–475. doi:10.1111/j.1398-9995.2008.01626.x
  • Noga O, Englmann C, Hanf G, Grützkau A, Guhl S, Kunkel G. Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin Exp Allergy. 2002;32(9):1348–1354. doi:10.1046/j.1365-2745.2002.01442.x
  • Hamada A, Watanabe N, Ohtomo H, Matsuda H. Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol. 1996;93(2):299–302. doi:10.1046/j.1365-2141.1996.5151055.x
  • Costello RW, Schofield BH, Kephart GM, Gleich GJ, Jacoby DB, Fryer AD. Localization of eosinophils to airway nerves and effect on neuronal M2 muscarinic receptor function. Am J Physiol. 1997;273(1 Pt 1):L93–103. doi:10.1152/ajplung.1997.273.1.L93
  • Banerji A, Piccirillo JF, Thawley SE, et al. Chronic rhinosinusitis patients with polyps or polypoid mucosa have a greater burden of illness. Am J Rhinol. 2007;21(1):19–26. doi:10.2500/ajr.2007.21.2979
  • Khan A, Vandeplas G, Huynh TMT, et al. The Global Allergy and Asthma European Network (GALEN) rhinosinusitis cohort: a large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology. 2019;57(1):32–42. doi:10.4193/Rhin17.255
  • Hastan D, Fokkens WJ, Bachert C, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66(9):1216–1223. doi:10.1111/j.1398-9995.2011.02646.x
  • Thilsing T, Rasmussen J, Lange B, Kjeldsen AD, Al-Kalemji A, Baelum J. Chronic rhinosinusitis and occupational risk factors among 20- to 75-year-old Danes-A GA(2) LEN-based study. Am J Ind Med. 2012;55(11):1037–1043. doi:10.1002/ajim.22074
  • LeMessurier KS, Tiwary M, Morin NP, Samarasinghe AE. Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Front Immunol. 2020;11:3. doi:10.3389/fimmu.2020.00003
  • Schleimer RP. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu Rev Pathol. 2017;12:331–357. doi:10.1146/annurev-pathol-052016-100401
  • Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am J Respir Crit Care Med. 2013;187(1):49–57. doi:10.1164/rccm.201207-1292OC
  • Takabayashi T, Kato A, Peters AT, et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2013;132(3):584–592.e4. doi:10.1016/j.jaci.2013.02.003
  • Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol. 1997;158(8):3902–3908.
  • Coffey CS, Mulligan RM, Schlosser RJ. Mucosal expression of nerve growth factor and brain-derived neurotrophic factor in chronic rhinosinusitis. Am J Rhinol Allergy. 2009;23(6):571–574. doi:10.2500/ajra.2009.23.3412
  • Deng YK, Ma J, Wang ZC, et al. Hemokinin-1 stimulates C-C motif chemokine ligand 24 production in macrophages to enhance eosinophilic inflammation in nasal polyps. Int Forum Allergy Rhinol. 2019;9(11):1334–1345. doi:10.1002/alr.22430
  • Cserháti E. The history of bronchial asthma from the Renaissance till the beginning of the twentieth century. Acta Physiol Hung. 2005;92(2):181–192. doi:10.1556/APhysiol.92.2005.2.9
  • Oren E, Gerald L, Stern DA, Martinez FD, Wright AL. Self-Reported Stressful Life Events During Adolescence and Subsequent Asthma: a Longitudinal Study. J Allergy Clin Immunol Pract. 2017;5(2):427–434.e2. doi:10.1016/j.jaip.2016.09.019
  • Sandberg S, Järvenpää S, Penttinen A, Paton JY, McCann DC. Asthma exacerbations in children immediately following stressful life events: a Cox’s hierarchical regression. Thorax. 2004;59(12):1046–1051. doi:10.1136/thx.2004.024604
  • Landeo-Gutierrez J, Forno E, Miller GE, Celedón JC. Exposure to Violence, Psychosocial Stress, and Asthma. Am J Respir Crit Care Med. 2020;201(8):917–922. doi:10.1164/rccm.201905-1073PP
  • Merrill A, Paracha A, Hemming E, et al. A structural model of high crime neighborhoods as a driver of toxic stress leading to asthma diagnoses among children of a large medical practice. Health Place. 2021;71:102665. doi:10.1016/j.healthplace.2021.102665
  • Gupta RS, Zhang X, Springston EE, et al. The association between community crime and childhood asthma prevalence in Chicago. Ann Allergy Asthma Immunol. 2010;104(4):299–306. doi:10.1016/j.anai.2009.11.047
  • Smyth JM, Soefer MH, Hurewitz A, Kliment A, Stone AA. Daily psychosocial factors predict levels and diurnal cycles of asthma symptomatology and peak flow. J Behav Med. 1999;22(2):179–193. doi:10.1023/a:1018787500151
  • Ciprandi G, Schiavetti I, Rindone E, Ricciardolo FLM. The impact of anxiety and depression on outpatients with asthma. Ann Allergy Asthma Immunol. 2015;115(5):408–414. doi:10.1016/j.anai.2015.08.007
  • Chen E, Hanson MD, Paterson LQ, Griffin MJ, Walker HA, Miller GE. Socioeconomic status and inflammatory processes in childhood asthma: the role of psychological stress. J Allergy Clin Immunol. 2006;117(5):1014–1020. doi:10.1016/j.jaci.2006.01.036
  • Liu LY, Coe CL, Swenson CA, Kelly EA, Kita H, Busse WW. School examinations enhance airway inflammation to antigen challenge. Am J Respir Crit Care Med. 2002;165(8):1062–1067. doi:10.1164/ajrccm.165.8.2109065
  • Heffner KL, Kiecolt-Glaser JK, Glaser R, Malarkey WB, Marshall GD. Stress and anxiety effects on positive skin test responses in young adults with allergic rhinitis. Ann Allergy Asthma Immunol. 2014;113(1):13–18. doi:10.1016/j.anai.2014.03.008
  • Lu Y, Ho R, Lim TK, et al. Neuropeptide Y may mediate psychological stress and enhance TH2 inflammatory response in asthma. J Allergy Clin Immunol. 2015;135(4):1061–1063.e4. doi:10.1016/j.jaci.2014.10.036
  • Kawano T, Ouchi R, Ishigaki T, et al. Increased Susceptibility to Allergic Asthma with the Impairment of Respiratory Tolerance Caused by Psychological Stress. Int Arch Allergy Immunol. 2018;177(1):1–15. doi:10.1159/000488289
  • Janssens T, Steele AM, Rosenfield D, Ritz T. Airway reactivity in response to repeated emotional film clip presentation in asthma. Biol Psychol. 2017;123:1–7. doi:10.1016/j.biopsycho.2016.11.006
  • Brehm JM, Ramratnam SK, Tse SM, et al. Stress and Bronchodilator Response in Children with Asthma. Am J Respir Crit Care Med. 2015;192(1):47–56. doi:10.1164/rccm.201501-0037OC
  • Chen W, Boutaoui N, Brehm JM, et al. ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2013;187(6):584–588. doi:10.1164/rccm.201210-1789OC
  • Yan Q, Forno E, Cardenas A, et al. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. Pediatr Pulmonol. 2021;56(7):1896–1905. doi:10.1002/ppul.25372
  • Miller GE, Chen E. Life stress and diminished expression of genes encoding glucocorticoid receptor and beta2-adrenergic receptor in children with asthma. Proc Natl Acad Sci U S A. 2006;103(14):5496–5501. doi:10.1073/pnas.0506312103
  • Bailey MT, Kierstein S, Sharma S, et al. Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. J Immunol. 2009;182(12):7888–7896. doi:10.4049/jimmunol.0800891
  • Forsythe P, Ebeling C, Gordon JR, Befus AD, Vliagoftis H. Opposing effects of short- and long-term stress on airway inflammation. Am J Respir Crit Care Med. 2004;169(2):220–226. doi:10.1164/rccm.200307-979OC
  • Costa-Pinto FA, Basso AS, Russo M. Role of mast cell degranulation in the neural correlates of the immediate allergic reaction in a murine model of asthma. Brain Behav Immun. 2007;21(6):783–790. doi:10.1016/j.bbi.2007.01.002
  • Germundson DL, Nagamoto-Combs K. Potential Role of Intracranial Mast Cells in Neuroinflammation and Neuropathology Associated with Food Allergy. Cells. 2022;11(4):738. doi:10.3390/cells11040738
  • Moriyama S, Brestoff JR, Flamar AL, et al. β(2)-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359(6379):1056–1061. doi:10.1126/science.aan4829
  • Galle-Treger L, Suzuki Y, Patel N, et al. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat Commun. 2016;7:13202. doi:10.1038/ncomms13202
  • Tomaki M, Ichinose M, Miura M, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med. 1995;151(3 Pt 1):613–617. doi:10.1164/ajrccm.151.3.7533601
  • Kay AB, Ali FR, Heaney LG, et al. Airway expression of calcitonin gene-related peptide in T-cell peptide-induced late asthmatic reactions in atopics. Allergy. 2007;62(5):495–503. doi:10.1111/j.1398-9995.2007.01342.x
  • Talbot S, Abdulnour REE, Burkett PR, et al. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron. 2015;87(2):341–354. doi:10.1016/j.neuron.2015.06.007
  • Caceres AI, Brackmann M, Elia MD, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106(22):9099–9104. doi:10.1073/pnas.0900591106
  • Garcia J, Lasiter PS, Bermudez-Rattoni F, Deems DA. A general theory of aversion learning. Ann N Y Acad Sci. 1985;443:8–21. doi:10.1111/j.1749-6632.1985.tb27060.x
  • Parker LA. The role of nausea in taste avoidance learning in rats and shrews. Auton Neurosci. 2006;125(1–2):34–41. doi:10.1016/j.autneu.2006.01.010
  • Pinto A, Yanai M, Sekizawa K, Aikawa T, Sasaki H. Conditioned enhancement of cough response in awake Guinea pigs. Int Arch Allergy Immunol. 1995;108(1):95–98. doi:10.1159/000237124
  • Schaller M, Murray DR, Bangerter A. Implications of the behavioural immune system for social behaviour and human health in the modern world. Philos Trans R Soc Lond B Biol Sci. 2015;370:1669. doi:10.1098/rstb.2014.0105
  • Denholm L, Gallagher G. Physiology and pharmacology of nausea and vomiting. Anaesthesia Intensive Care Med. 2018;19(9):513–516. doi:10.1016/J.MPAIC.2018.06.010
  • Berin MC. Immunopathophysiology of food protein–induced enterocolitis syndrome. J Allergy Clin Immunol. 2015;135(5):1108–1113. doi:10.1016/J.JACI.2014.12.1948
  • Holbrook T, Keet CA, Frischmeyer-Guerrerio PA, Wood RA. Use of ondansetron for food protein-induced enterocolitis syndrome. J Allergy Clin Immunol. 2013;132(5):1219–1220. doi:10.1016/j.jaci.2013.06.021
  • Miceli Sopo S, Battista A, Greco M, Monaco S. Ondansetron for food protein-induced enterocolitis syndrome. Int Arch Allergy Immunol. 2014;164(2):137–139. doi:10.1159/000363384
  • Palermo-Neto J, Guimarães RK. Pavlovian conditioning of lung anaphylactic response in rats. Life Sci. 2000;68(6):611–623. doi:10.1016/s0024-3205(00)00966-8
  • Germundson DL, Nookala S, Smith NA, Warda Y. HLA-II Alleles Influence Physical and Behavioral Responses to a Whey Allergen in a Transgenic Mouse Model of Cow’s Milk Allergy. Front Allergy. 2022;3:870513. doi:10.3389/falgy.2022.870513
  • Schemann M, Michel K, Ceregrzyn M, Zeller F, Seidl S, Bischoff SC. Human mast cell mediator cocktail excites neurons in human and Guinea-pig enteric nervous system. Neurogastroenterol Motil. 2005;17(2):281–289. doi:10.1111/j.1365-2982.2004.00591.x
  • Frieling T, Cooke HJ, Wood JD. Neuroimmune communication in the submucous plexus of Guinea pig colon after sensitization to milk antigen. Am J Physiol. 1994;267(6 Pt 1):G1087–93. doi:10.1152/ajpgi.1994.267.6.G1087
  • Bell A, Althaus M, Diener M. Communication between mast cells and rat submucosal neurons. Pflugers Arch. 2015;467(8):1809–1823. doi:10.1007/s00424-014-1609-9
  • Tamura K, Wood JD. Effects of prolonged exposure to histamine on Guinea pig intestinal neurons. Dig Dis Sci. 1992;37(7):1084–1088. doi:10.1007/BF01300291
  • Tamura K, Palmer JM, Wood JD. Presynaptic inhibition produced by histamine at nicotinic synapses in enteric ganglia. Neuroscience. 1988;25(1):171–179. doi:10.1016/0306-4522(88)90016-4
  • Liu S, Hu HZ, Gao N, et al. Neuroimmune interactions in Guinea pig stomach and small intestine. Am J Physiol Gastrointest Liver Physiol. 2003;284(1):G154–64. doi:10.1152/ajpgi.00241.2002
  • Wang GD, Wang XY, Liu S, et al. Innervation of enteric mast cells by primary spinal afferents in Guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol. 2014;307(7):G719–31. doi:10.1152/ajpgi.00125.2014
  • Gao C, Liu S, Hu HZ, et al. Serine proteases excite myenteric neurons through protease-activated receptors in Guinea pig small intestine. Gastroenterology. 2002;123(5):1554–1564. doi:10.1053/gast.2002.36581
  • Reed DE, Barajas-Lopez C, Cottrell G, et al. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of Guinea-pig submucosal neurons. J Physiol. 2003;547(Pt 2):531–542. doi:10.1113/jphysiol.2002.032011
  • Leng Y, Yamamoto T, Kadowaki M. Alteration of cholinergic, purinergic and sensory neurotransmission in the mouse colon of food allergy model. Neurosci Lett. 2008;445(3):195–198. doi:10.1016/j.neulet.2008.09.014
  • Van Geldre LA, Lefebvre RA. Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr Pharm Des. 2004;10(20):2483–2497. doi:10.2174/1381612043383890
  • Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med. 2017;282(1):5–23. doi:10.1111/joim.12591
  • Lothe L, Ivarsson SA, Lindberg T. Motilin, vasoactive intestinal peptide and gastrin in infantile colic. Acta Paediatr Scand. 1987;76(2):316–320. doi:10.1111/j.1651-2227.1987.tb10467.x
  • Lee J, Yamamoto T, Hayashi S, Kuramoto H, Kadowaki M. Enhancement of CGRP sensory afferent innervation in the gut during the development of food allergy in an experimental murine model. Biochem Biophys Res Commun. 2013;430(3):895–900. doi:10.1016/j.bbrc.2012.12.058
  • Leung DYM, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol. 2020;145(6):1485–1497. doi:10.1016/j.jaci.2020.02.021
  • Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol. 2020;34(2):239–250. doi:10.1111/jdv.15973
  • Cevikbas F, Wang X, Akiyama T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133(2):448–460. doi:10.1016/j.jaci.2013.10.048
  • Feld M, Garcia R, Buddenkotte J, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol. 2016;138(2):500–508.e24. doi:10.1016/j.jaci.2016.02.020
  • Guseva D, Rüdrich U, Kotnik N, et al. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy. 2020;50(5):577–584. doi:10.1111/cea.13560
  • Campion M, Smith L, Gatault S, Métais C, Buddenkotte J, Steinhoff M. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp Dermatol. 2019;28(12):1501–1504. doi:10.1111/exd.14034
  • Oetjen LK, Mack MR, Feng J, et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell. 2017;171(1):217–228.e13. doi:10.1016/j.cell.2017.08.006
  • Braz JM, Dembo T, Charruyer A, Ghadially R, Fassett MS, Basbaum AI. Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness. Proc Natl Acad Sci U S A. 2021;118(8):548. doi:10.1073/pnas.2021386118
  • Liu B, Tai Y, Achanta S, et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci U S A. 2016;113(47):E7572–E7579. doi:10.1073/pnas.1606608113
  • Wang F, Trier AM, Li F, et al. A basophil-neuronal axis promotes itch. Cell. 2021;184(2):422–440.e17. doi:10.1016/j.cell.2020.12.033
  • Meng J, Wang J, Steinhoff M, Dolly JO. TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-containing vesicles to the plasmalemma via Munc18-1/syntaxin1/SNAP-25 mediated fusion. Sci Rep. 2016;6:21226. doi:10.1038/srep21226
  • Mishra SK, Wheeler JJ, Pitake S, et al. Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Rep. 2020;31(1):107472. doi:10.1016/j.celrep.2020.03.036
  • Guo CJ, Mack MR, Oetjen LK, et al. Kallikrein 7 Promotes Atopic Dermatitis-Associated Itch Independently of Skin Inflammation. J Invest Dermatol. 2020;140(6):1244–1252.e4. doi:10.1016/j.jid.2019.10.022
  • Barry DM, Munanairi A, Chen ZF. Spinal Mechanisms of Itch Transmission. Neurosci Bull. 2018;34(1):156–164. doi:10.1007/s12264-017-0125-2
  • Ding W, Stohl LL, Wagner JA, Granstein RD. Calcitonin gene-related peptide biases Langerhans cells toward Th2-type immunity. J Immunol. 2008;181(9):6020–6026. doi:10.4049/jimmunol.181.9.6020
  • Serhan N, Basso L, Sibilano R, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol. 2019;20(11):1435–1443. doi:10.1038/s41590-019-0493-z
  • Meixiong J, Anderson M, Limjunyawong N, et al. Activation of Mast-Cell-Expressed Mas-Related G-Protein-Coupled Receptors Drives Non-histaminergic Itch. Immunity. 2019;50(5):1163–1171.e5. doi:10.1016/j.immuni.2019.03.013
  • Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast Cell-Specific MRGPRX2: a Key Modulator of Neuro-Immune Interaction in Allergic Diseases. Curr Allergy Asthma Rep. 2021;21(1):3. doi:10.1007/s11882-020-00979-5
  • Pavlov VA, Chavan SS, Tracey KJ. Molecular and Functional Neuroscience in Immunity. Annu Rev Immunol. 2018;36:783–812. doi:10.1146/annurev-immunol-042617-053158
  • Qu L, Fu K, Yang J, Shimada SG, LaMotte RH. CXCR3 chemokine receptor signaling mediates itch in experimental allergic contact dermatitis. Pain. 2015;156(9):1737–1746. doi:10.1097/j.pain.0000000000000208
  • Walsh CM, Hill RZ, Schwendinger-Schreck J, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. eLife. 2019:8. doi:10.7554/eLife.48448
  • Yosipovitch G, Goon ATJ, Wee J, Chan YH, Zucker I, Goh CL. Itch characteristics in Chinese patients with atopic dermatitis using a new questionnaire for the assessment of pruritus. Int J Dermatol. 2002;41(4):212–216. doi:10.1046/j.1365-4362.2002.01460.x
  • Chrostowska-Plak D, Reich A, Szepietowski JC. Relationship between itch and psychological status of patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2013;27(2):e239–42. doi:10.1111/j.1468-3083.2012.04578.x
  • Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther. 2020;42(6):1007–1014. doi:10.1016/j.clinthera.2020.05.002
  • Peters EMJ, Liezmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci. 2012;1262:118–126. doi:10.1111/j.1749-6632.2012.06647.x
  • Jackson-Cowan L, Cole EF, Silverberg JI, Lawley LP. Childhood atopic dermatitis is associated with cognitive dysfunction: a National Health Interview Survey study from 2008 to 2018. Ann Allergy Asthma Immunol. 2021;126(6):661–665. doi:10.1016/j.anai.2020.11.008
  • Billeci L, Tonacci A, Tartarisco G, Ruta L, Pioggia G, Gangemi S. Association Between Atopic Dermatitis and Autism Spectrum Disorders: a Systematic Review. Am J Clin Dermatol. 2015;16(5):371–388. doi:10.1007/s40257-015-0145-5
  • Konstantinou GN, Konstantinou GN. Psychological Stress and Chronic Urticaria: a Neuro-immuno-cutaneous Crosstalk. A Systematic Review of the Existing Evidence. Clin Ther. 2020;42(5):771–782. doi:10.1016/j.clinthera.2020.03.010
  • Konstantinou GN, Konstantinou GN. Psychiatric comorbidity in chronic urticaria patients: a systematic review and meta-analysis. Clin Transl Allergy. 2019;9:42. doi:10.1186/s13601-019-0278-3
  • Vena GA, Cassano N, Di Leo E, Calogiuri GF, Nettis E. Focus on the role of substance P in chronic urticaria. Clin Mol Allergy. 2018;16:24. doi:10.1186/s12948-018-0101-z
  • Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med. 2021;8:139. doi:10.3389/fmed.2021.627985
  • Theoharides TC, Kalogeromitros D. The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci. 2006;1088:78–99. doi:10.1196/annals.1366.025
  • Dvorak AM. Ultrastructural studies of human basophils and mast cells. J Histochem Cytochem. 2005;53(9):1043–1070. doi:10.1369/jhc.5R6647.2005
  • Conti P, Pregliasco FE, Bellomo RG, et al. Mast Cell Cytokines IL-1, IL-33, and IL-36 Mediate Skin Inflammation in Psoriasis: a Novel Therapeutic Approach with the Anti-Inflammatory Cytokines IL-37, IL-38, and IL-1Ra. Int J Mol Sci. 2021;22:15. doi:10.3390/ijms22158076
  • Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 2008;123(3):398–410. doi:10.1111/j.1365-2567.2007.02705.x
  • Bulut K, Felderbauer P, Deters S, et al. Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int J Colorectal Dis. 2008;23(5):535–541. doi:10.1007/s00384-008-0447-7
  • Zheng W, Wang J, Zhu W, Xu C, He S. Upregulated expression of substance P in basophils of the patients with chronic spontaneous urticaria: induction of histamine release and basophil accumulation by substance P. Cell Biol Toxicol. 2016;32(3):217–228. doi:10.1007/s10565-016-9330-4
  • Arck P, Paus R. From the brain-skin connection: the neuroendocrine-immune misalliance of stress and itch. Neuroimmunomodulation. 2006;13(5–6):347–356. doi:10.1159/000104863
  • Kim JE, Cho BK, Cho DH, Park HJ. Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: evidence of its association with stress-related disease activity. Acta Derm Venereol. 2013;93(4):387–393. doi:10.2340/00015555-1557
  • Rasool R, Ashiq I, Shera IA, Yousuf Q, Shah ZA. Study of serum interleukin (IL) 18 and IL-6 levels in relation with the clinical disease severity in chronic idiopathic urticaria patients of Kashmir (North India). Asia Pac Allergy. 2014;4(4):206–211. doi:10.5415/apallergy.2014.4.4.206
  • Puxeddu I, Italiani P, Giungato P, et al. Free IL-18 and IL-33 cytokines in chronic spontaneous urticaria. Cytokine. 2013;61(3):741–743. doi:10.1016/j.cyto.2013.01.015
  • Yang HY, Sun CC, Wu YC, Wang JD. Stress, insomnia, and chronic idiopathic urticaria–a case-control study. J Formosan Med Assoc. 2005;104(4):254–263.
  • Varghese R, Rajappa M, Chandrashekar L, et al. Association among stress, hypocortisolism, systemic inflammation, and disease severity in chronic urticaria. Ann Allergy Asthma Immunol. 2016;116(4):344–348.e1. doi:10.1016/j.anai.2016.01.016
  • Graubard R, Perez-Sanchez A, Katta R. Stress and Skin: an Overview of Mind Body Therapies as a Treatment Strategy in Dermatology. Dermatol Practical Conceptual. 2021;11(4):e2021091. doi:10.5826/dpc.1104a91
  • Papadopoulou N, Kalogeromitros D, Staurianeas NG, Tiblalexi D, Theoharides TC. Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria. J Invest Dermatol. 2005;125(5):952–955. doi:10.1111/j.0022-202X.2005.23913.x
  • Theoharides TC, Singh LK, Boucher W, et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology. 1998;139(1):403–413. doi:10.1210/endo.139.1.5660