252
Views
8
CrossRef citations to date
0
Altmetric
Review

Dysregulated Metabolism in the Pathophysiology of Non-Allergic Obese Asthma

, & ORCID Icon
Pages 179-186 | Published online: 04 Mar 2021

References

  • Atkins PC, Norman ME, Zweiman B. Antigen-induced neutrophil chemotactic activity in man. Correlation with bronchospasm and inhibition by disodium cromoglycate. J Allergy Clin Immunol. 1978;62(3):149–155. doi:10.1016/0091-6749(78)90099-4
  • Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323(15):1033–1039. doi:10.1056/NEJM199010113231505
  • Haahtela T, Järvinen M, Kava T, et al. Comparison of a β2-agonist, terbutaline, with an inhaled corticosteroid, budesonide, in newly detected asthma. N Engl J Med. 1991;325(6):388–392. doi:10.1056/NEJM199108083250603
  • Halonen M, Stern D, Lohman C, et al. Two subphenotypes of childhood asthma that differ in maternal and paternal influences on asthma risk. Am J Respir Crit Care Med. 1999;160(2):564–570. doi:10.1164/ajrccm.160.2.9809038
  • Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–224. doi:10.1164/rccm.200711-1754OC
  • Kim M, Choi S, Choi S-H, et al. Metabolic syndrome and lung function in Korean children and adolescents: a cross-sectional study. Sci Rep. 2019;9(1):15646. doi:10.1038/s41598-019-51968-2
  • Durham SR, Carroll M, Walsh GM, Kay AB. Leukocyte activation in allergen-induced late-phase asthmatic reactions. N Engl J Med. 1984;311(22):1398–1402. doi:10.1056/NEJM198411293112202
  • Brasier AR, Victor S, Ju H, et al. Predicting intermediate phenotypes in asthma using bronchoalveolar lavage-derived cytokines. Clin Transl Sci. 2010;3(4):147–157. doi:10.1111/j.1752-8062.2010.00204.x
  • Telenga ED, Tideman SW, Kerstjens HAM, et al. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012;67(8):1060–1068. doi:10.1111/j.1398-9995.2012.02855.x
  • Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–1645. doi:10.1161/CIRCULATIONAHA.109.192644
  • Forno E, Han -Y-Y, Muzumdar RH, et al. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J Allergy Clin Immunol. 2015;136(2):304–11.e8. doi:10.1016/j.jaci.2015.01.010
  • Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359(9309):824–830. doi:10.1016/S0140-6736(02)07952-7
  • Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9):841–851. doi:10.1056/NEJMoa1901118
  • Dineen SL, McKenney ML, Bell LN, et al. Metabolic syndrome abolishes glucagon-like peptide 1 receptor agonist stimulation of SERCA in coronary smooth muscle. Diabetes. 2015;64(9):3321–3327. doi:10.2337/db14-1790
  • Eissele R, GÖKE R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest. 1992;22(4):283–291. doi:10.1111/j.1365-2362.1992.tb01464.x
  • Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84(10):3434–3438. doi:10.1073/pnas.84.10.3434
  • Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4(5):391–406. doi:10.1016/j.cmet.2006.10.001
  • Rogliani P, Calzetta L, Capuani B, et al. Glucagon-like peptide 1 receptor: a novel pharmacological target for treating human bronchial hyperresponsiveness. Am J Respir Cell Mol Biol. 2016;55(6):804–814. doi:10.1165/rcmb.2015-0311OC
  • Romaní-Pérez M, Outeiriño-Iglesias V, Gil-Lozano M, et al. Pulmonary GLP-1 receptor increases at birth and exogenous GLP-1 receptor agonists augmented surfactant-protein levels in litters from normal and nitrofen-treated pregnant rats. Endocrinology. 2013;154(3):1144–1155. doi:10.1210/en.2012-1786
  • Zhu T, Li C, Zhang X, et al. GLP-1 analogue liraglutide enhances SP-a expression in LPS-induced acute lung injury through the TTF-1 signaling pathway. Mediators Inflamm. 2018;2018:3601454. doi:10.1155/2018/3601454
  • Mendivil CO, Koziel H, Brain JD, Fehrenbach H. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates. PLoS One. 2015;10(4):e0123344. doi:10.1371/journal.pone.0123344
  • Bloodworth MH, Rusznak M, Pfister CC, et al. Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol. 2018;142(2):683–687.e12. doi:10.1016/j.jaci.2018.01.053
  • Viby NE, Isidor MS, Buggeskov KB, et al. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 2013;154(12):4503–4511. doi:10.1210/en.2013-1666
  • Toki S, Goleniewska K, Reiss S, et al. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol. 2018;142(5):1515–1528.e8. doi:10.1016/j.jaci.2017.11.043
  • Huang J, Yi H, Zhao C, et al. Glucagon-like peptide-1 receptor (GLP-1R) signaling ameliorates dysfunctional immunity in COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13(p):3191–3202. doi:10.2147/COPD.S175145
  • Khan F, Mat A, Hogan AE, et al. Preliminary asthma-related outcomes following glucagon-like peptide 1 agonist therapy. QJM. 2017;110(12):853–854. doi:10.1093/qjmed/hcx125
  • Stahlman MT, Jones M, Gray ME, et al. Ontogeny of neuroendocrine cells in human fetal lung. III. An electron microscopic immunohistochemical study. Labor Investig. 1987;56(6):629–641.
  • Mathews JA, Krishnamoorthy N, Kasahara DI, et al. Augmented responses to ozone in obese mice require IL-17A and gastrin-releasing peptide. Am J Respir Cell Mol Biol. 2018;58(3):341–351. doi:10.1165/rcmb.2017-0071OC
  • Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360:6393. doi:10.1126/science.aan8546
  • Tomaki M, Ichinose M, Miura M, et al. Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med. 1995;151(3 Pt 1):613–617. doi:10.1164/ajrccm/151.3_Pt_1.613
  • Chu HW, Kraft M, Krause JE, et al. Substance P and its receptor neurokinin 1 expression in asthmatic airways. J Allergy Clin Immunol. 2000;106(4):713–722. doi:10.1067/mai.2000.109829
  • Gu X, Karp PH, Brody SL, et al. Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol. 2014;50(3):637–646. doi:10.1165/rcmb.2013-0199OC
  • Barrios J, Patel KR, Aven L, et al. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. FASEB J. 2017;31(9):4117–4128. doi:10.1096/fj.201700115R
  • Barrios J, Kho AT, Aven L, et al. Pulmonary neuroendocrine cells secrete γ-aminobutyric acid to induce goblet cell hyperplasia in primate models. Am J Respir Cell Mol Biol. 2019;60(6):687–694. doi:10.1165/rcmb.2018-0179OC
  • Stevens TP, McBride JT, Peake JL, et al. Cell proliferation contributes to PNEC hyperplasia after acute airway injury. Am J Physiol. 1997;272(3 Pt 1):L486–93. doi:10.1152/ajplung.1997.272.3.L486
  • Deterding RR, Pye C, Fan LL, et al. Persistent tachypnea of infancy is associated with neuroendocrine cell hyperplasia. Pediatr Pulmonol. 2005;40(2):157–165. doi:10.1002/ppul.20243
  • Parlevliet ET, Elst JPS-VD, Corssmit EPM, et al. CNTO736, a novel glucagon-like peptide-1 receptor agonist, ameliorates insulin resistance and inhibits very low-density lipoprotein production in high-fat-fed mice. J Pharmacol Exp Ther. 2009;328(1):240. doi:10.1124/jpet.108.144154
  • Wueest S, Laesser CI, Böni-Schnetzler M, et al. IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion. Diabetes. 2018;67(1):36–45. doi:10.2337/db17-0637
  • Park YH, Oh EY, Han H, et al. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Exp Mol Med. 2019;51(5):1–12.
  • Xu R, Gopireddy RR, Wu Y, et al. Hyperinsulinemia promotes heterologous desensitization of β2 adrenergic receptor in airway smooth muscle in obesity. FASEB J. 2020;34(3):3996–4008. doi:10.1096/fj.201800688RR
  • McGarry ME, Castellanos E, Thakur N, et al. Obesity and bronchodilator response in black and Hispanic children and adolescents with asthma. Chest. 2015;147(6):1591–1598. doi:10.1378/chest.14-2689
  • Gaston B, Drazen JM, Jansen A, et al. Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. J Pharmacol Exp Ther. 1994;268(2):978–984.
  • Stirling RG, Kharitonov SA, Campbell D, et al. Increase in exhaled nitric oxide levels in patients with difficult asthma and correlation with symptoms and disease severity despite treatment with oral and inhaled corticosteroids. Asthma and Allergy Group. Thorax. 1998;53(12):1030–1034. doi:10.1136/thx.53.12.1030
  • De Prins S, Marcucci F, Sensi L, et al. Exhaled nitric oxide and nasal tryptase are associated with wheeze, rhinitis and nasal allergy in primary school children. Biomarkers. 2014;19(6):481–487. doi:10.3109/1354750X.2014.937362
  • Yao TC, Tsai H-J, Chang S-W, et al. Obesity disproportionately impacts lung volumes, airflow and exhaled nitric oxide in children. PLoS One. 2017;12(4):e0174691. doi:10.1371/journal.pone.0174691
  • Komakula S, Khatri S, Mermis J, et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir Res. 2007;8(1):32. doi:10.1186/1465-9921-8-32
  • De A, Rastogi D. Association of pediatric obesity and asthma, pulmonary physiology, metabolic dysregulation, and atopy; and the role of weight management. Expert Rev Endocrinol Metab. 2019;14(5):335–349. doi:10.1080/17446651.2019.1635007
  • Xu W, Comhair SAA, Janocha AJ, et al. Arginine metabolic endotypes related to asthma severity. PLoS One. 2017;12(8):e0183066. doi:10.1371/journal.pone.0183066
  • Singh VP, Aggarwal R, Singh S, et al. Metabolic syndrome is associated with increased oxo-nitrative stress and asthma-like changes in lungs. PLoS One. 2015;10(6):e0129850. doi:10.1371/journal.pone.0129850
  • Lee W, Lee HJ, Jang HB, et al. Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle. Sci Rep. 2018;8(1):2133. doi:10.1038/s41598-018-20549-0
  • Holguin F, Comhair SAA, Hazen SL, et al. An association between l-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. Am J Respir Crit Care Med. 2013;187(2):153–159. doi:10.1164/rccm.201207-1270OC
  • Fu WJ, Haynes TE, Kohli R, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr. 2005;135(4):714–721. doi:10.1093/jn/135.4.714
  • Ojima A, Ishibashi Y, Matsui T, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013;182(1):132–141. doi:10.1016/j.ajpath.2012.09.016
  • Mirmiran P, Moghadam SK, Bahadoran Z, Ghasemi A, Azizi F. Dietary L-arginine intakes and the risk of metabolic syndrome: a 6-year follow-up in tehran lipid and glucose study. Prev Nutr Food Sci. 2017;22(4):263–270. doi:10.3746/pnf.2017.22.4.263
  • Holguin F, Grasemann H, Sharma S, et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight. 2019;4(24). doi:10.1172/jci.insight.131733.
  • Kenyon NJ, Last M, Bratt JM, et al. l-arginine supplementation and metabolism in asthma. Pharmaceuticals (Basel). 2011;4(1):187–201. doi:10.3390/ph4010187