326
Views
3
CrossRef citations to date
0
Altmetric
Review

Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients

ORCID Icon, , , &
Pages 673-689 | Published online: 18 May 2022

References

  • Asthma data, statistics and surveillance; 2021. Available from: http://www.cdc.gov/asthma/most_recent_data/htm. Accessed January 9, 2022.
  • AsthmaStats- asthma and obesity. Available from: https://www.cdc.gov/asthma/asthma_stats/percentage_people_asthma_obese.pdf. Accessed January 17, 2022.
  • Mohan A, Grace J, Wang BR, Lugogo N. The effects of obesity in asthma. Curr Allergy Asthma Rep. 2019;19(49). doi:10.1007/s11882-019-0877-z
  • Miethe S, Katsonova K, Karaulov A, Renz H. Obesity and asthma. J Allergy Clin Immunol. 2020;146:685–693. doi:10.1016/j.jaci.2020.08.011
  • Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141:1169–1179. doi:10.1016/j.jaci.2018.02.004
  • Garcia-Rio F, Alvarez-Puebla MJ, Esteba-Gorgojo I. Barranco P and olaguibel jm. obesity and asthma: key clinical questions. J Allergy Clin Immunol. 2019;29(4):262–271.
  • Beuther DA, Sutherland ER. Overweight, obesity and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med. 2007;175:661–666. doi:10.1164/rccm.200611-1717OC
  • Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular to clinical approaches. Nat Med. 2012;18:716–725. doi:10.1038/nm.2678
  • Dixon AE, Poynter ME. Mechanisms of asthma in obesity. Pleiotropic aspects of obesity produce distinct asthma phenotypes. Am J Respir Cell Mol Biol. 2016;54:601–608. doi:10.1165/rcmb.2016-0017PS
  • Scott HA, Wood LG, Gibson PG. Role of obesity in asthma: mechanisms and management strategies. Curr Allergy Asthma Rep. 2017;17(53). doi:10.1007/s11882-017-0719-9
  • Khalid F, Holguin F. A review of obesity and asthma across the life span. J Asthma. 2018;55(12):1286–1300. doi:10.1080/02770903.2018.1424187
  • Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–224. doi:10.1164/rccm.200711-1754OC
  • Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med. 2010;181(4):315–323. doi:10.1164/rccm.200906-0896OC
  • Holguin F, Bleecker ER, Busse WW, et al. Obesity and asthma, an association modified by age of asthma onset. J Allergy Clin Immunol. 2011;127(6):1486–1493. doi:10.1016/j.jaci.2011.03.036
  • Scott HA, Gibson PG, Garg ML, Wood LG. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J. 2011;38(3):594–602. doi:10.1183/09031936.00139810
  • Sutherland TJ, Cowan JO, Young S, et al. The association between obesity and asthma: interactions between systemic and airway inflammation. Am J Respir Crit Care Med. 2008;178(5):469–475. doi:10.1164/rccm.200802-301OC
  • Sutherland ER, Goleva E, King TS, et al. Cluster analysis of obesity and asthma phenotypes. PLoS One. 2012;7(5):e36631. doi:10.1371/journal.pone.0036631
  • Jones RL, Nzekwu -M-MU. The effects of body mass index on lung volumes. Chest. 2006;130:827–833. doi:10.1378/chest.130.3.827
  • Biring MS, Lewis MI, Liu JT, Mohsenifar Z. Pulmonary physiologic changes of morbid obesity. Am J Med Sci. 1999;318:293–297. doi:10.1016/S0002-9629(15)40641-X
  • Ding DJ, Martin JG, Macklem PT. Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol. 1987;62:1324–1330. doi:10.1152/jappl.1987.62.3.1324
  • Sin DD, Sutherland ER. Obesity and the lung: 4. Obesity and asthma. Thorax. 2008;63:1018–1023. doi:10.1136/thx.2007.086819
  • Sideleva O, Suratt BT, Black KE, et al. Obesity and asthma: an inflammatory disease of adipose tissue not the airway. Am J Respir Crit Care Med. 2012;186:598–605. doi:10.1164/rccm.201203-0573OC
  • Peters U, Hernandez P, Dechman G, Ellsmere J, Maksym G. Early detection of changes in lung mechanics with oscillometry following bariatric surgery in severe obesity. Appl Physiol Nutr Metab. 2016;41(5):538–547. PMID: 27109263. doi:10.1139/apnm-2015-0473
  • Bates JH, Dixon AE. Potential role of the airway wall in the asthma of obesity. J Appl Physiol. 2015;118:36–41. doi:10.1152/japplphysiol.00684.2014
  • Yalcin HC, Perry SF, Ghadiali SN. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. J Appl Physiol. 2007;103:1796–1807. doi:10.1152/japplphysiol.00164.2007
  • Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20:715–721. doi:10.1111/resp.12563
  • Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59:560–570. doi:10.1007/s00125-015-3810-6
  • Dixon AE, Pratley RE, Forgione PM, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol. 2011;128:508–515.e1,2. doi:10.1016/j.jaci.2011.06.009
  • McLaughlin T, Liu LF, Lamendola C, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34:2632–2636. doi:10.1161/ATVBAHA.114.304636
  • Desai D, Newby C, Symon FA, et al. Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J Respir Crit Care Med. 2013;188:657–663. doi:10.1164/rccm.201208-1470OC
  • van der Wiel E, Ten Hacken NH, van den Berge M, Timens W, Reddel HK, Postma DS. Eosinophilic inflammation in subjects with mild-to-moderate asthma with and without obesity: disparity between sputum and biopsies. Am J Respir Crit Care Med. 2014;189:1281–1284. doi:10.1164/rccm.201310-1841LE
  • van Veen IH, Ten Brinke A, Sterk PJ, Rabe KF, Bel EH. Airway inflammation in obese and nonobese patients with difficult-to-treat asthma. Allergy. 2008;63:570–574. doi:10.1111/j.1398-9995.2007.01597.x
  • Lessard A, Turcotte H, Cormier Y, Boulet LP. Obesity and asthma: a specific phenotype? Chest. 2008;134:317–323. doi:10.1378/chest.07-2959
  • Marijsse GS, Seys SF, Schelpe AS, et al. Obese individuals with asthma preferentially have a high IL-5/IL-17A/IL-25 sputum inflammatory pattern. Am J Respir Crit Care Med. 2014;189:1284–1285. doi:10.1164/rccm.201311-2011LE
  • Ge XN, Greenberg Y, Hosseinkhani MR, et al. High-fat diet promotes lung fibrosis and attenuates airway eosinophilia after exposure to cockroach allergen in mice. Exp Lung Res. 2013;39:365–378. doi:10.3109/01902148.2013.829537
  • Calixto MC, Lintomen L, Schenka A, Saad MJ, Zanesco A, Antunes E. Obesity enhances eosinophilic inflammation in a murine model of allergic asthma. Br J Pharmacol. 2010;159:617–625. doi:10.1111/j.1476-5381.2009.00560.x
  • Lintomen L, Calixto MC, Schenka A, Antunes E. Allergen-induced bone marrow eosinophilopoiesis and airways eosinophilic inflammation in leptin-deficient ob/ob mice. Obesity. 2012;20:1959–1965. doi:10.1038/oby.2012.93
  • Shore SA, Schwartzman IN, Mellema MS, Flynt L, Imrich A, Johnston RA. Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol. 2005;115:103–109. doi:10.1016/j.jaci.2004.10.007
  • Jeong KY, Lee J, Li C. Juvenile obesity aggravates disease severity in a rat model of atopic dermatitis. Allergy Asthma Immunol Res. 2015;7:69–75. doi:10.4168/aair.2015.7.1.69
  • Zheng H, Zhang X, Castillo EF, Luo Y, Liu M, Yang XO. Leptin enhances TH2 and ILC2 responses in allergic airway disease. J Biol Chem. 2016;291(42):22043–22052. PMID: 27566543; PMCID: PMC5063987. doi:10.1074/jbc.M116.743187
  • Hasenkrug KJ. The leptin connection: regulatory T cells and autoimmunity. Immunity. 2007;26(2):143–145. doi:10.1016/j.immuni.2007.02.002
  • Masaki T, Chiba S, Tatsukawa H, et al. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology. 2004;40:177–184. doi:10.1002/hep.20282
  • Kumada M, Kihara S, Ouchi N, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109:2046–2049. doi:10.1161/01.CIR.0000127953.98131.ED
  • Shore SA, Terry RD, Flynt L, Xu A, Hug C. Adiponectin attenuates allergen-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2006;118:389–395. doi:10.1016/j.jaci.2006.04.021
  • Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13:707–712. doi:10.1038/ni.2343
  • Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–919. doi:10.1016/j.jaci.2005.02.023
  • Sharma N, Akkoyunlu M, Rabin RL. Macrophages-common culprit in obesity and asthma. Allergy. 2018;73(6):1196–1205. PMID: 29178573. doi:10.1111/all.13369
  • Periyalil HA, Wood LG, Scott HA, Jensen ME, Gibson PG. Macrophage activation, age and sex effects of immunometabolism in obese asthma. Eur Respir J. 2014;45:388–395. doi:10.1183/09031936.00080514
  • Fernandez-Boyanapalli R, Goleva E, Kolakowski C, et al. Obesity impairs apoptotic cell clearance in asthma. J Allergy Clin Immunol. 2013;131:1041–1047. doi:10.1016/j.jaci.2012.09.028
  • Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54–61. doi:10.1038/nm.3423
  • Sumarac-Dumanovic M, Stevanovic D, Ljubic A, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Intl J Obesity. 2009;33:151–156. doi:10.1038/ijo.2008.216
  • Telenga ED, Tideman SW, Kerstjens HAM, et al. Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced treatment response. Allergy. 2012;67(8):1060–1068. doi:10.1111/j.1398-9995.2012.02855.x
  • Chen J-H, Qin L, Shi -Y-Y, et al. IL- 17 protein levels in both induced sputum and plasma are increased in stable but not acute asthma individuals with obesity. Respir med. 2016;121:48–58. doi:10.1016/j.rmed.2016.10.018
  • Umetsu DT. Mechanisms by which obesity impacts upon asthma. Thorax. 2017;72(2):174–177. PMID: 27672120. doi:10.1136/thoraxjnl-2016-209130
  • Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma. 2017;54:893–904. doi:10.1080/02770903.2017.1283696
  • Chen Y, Tian J, Tian X, et al. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS One. 2014;9(3):e92450. PMID: 24642966; PMCID: PMC3958510. doi:10.1371/journal.pone.0092450
  • Bullens DMA, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7:135. doi:10.1186/1465-9921-7-135
  • Farahi N, Paige E, Balla J, et al. Neutrophil-mediated IL-6 receptor trans-signaling and the risk of chronic obstructive pulmonary disease and asthma. Hum Mol Genet. 2017;26:1584–1596. doi:10.1093/hmg/ddx053
  • Peters MC, McGrath KW, Hawkins GA; National Heart, Lung, and Blood Institute Severe Asthma Research Program. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016:574–584. PMID: 27283230; PMCID: PMC5007068. doi:10.1016/S2213-2600(16)30048-0
  • Lin YL, Chen SH, Wang JY. Critical role of IL-6 in dendritic cell-induced allergic inflammation of asthma. J Mol Med (Berl). 2016;94(1):51–59. PMID: 26232935. doi:10.1007/s00109-015-1325-8
  • Jevnikar Z, Östling J, Ax E, et al. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J Allergy Clin Immunol. 2019;143:577–590. doi:10.1016/j.jaci.2018.05.026
  • Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N Engl J Med. 2006;354:697–708. doi:10.1056/NEJMoa050580
  • Manni ML, Trudeau JB, Scheller EV, et al. The complex relationship between inflammation and lung function in severe asthma. Mucosal Immunol. 2014;7:1186–1198. doi:10.1038/mi.2014.8
  • Kips JC, Tavernier J, Pauwels RA. Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis. 1992;145(2 Pt 1):332–336. PMID: 1736737. doi:10.1164/ajrccm/145.2_Pt_1.332
  • Cai Y, Cao YX, Lu SM, Xu CB, Cardell LO. Infliximab alleviates inflammation and ex vivo airway hyperreactivity in asthmatic E3 rats. Int Immunol. 2011;23(7):443–451. PMID: 21677048. doi:10.1093/intimm/dxr032
  • Kim JY, Sohn JH, Lee JH, Park JW. Obesity increases airway hyperresponsiveness via the TNF-a pathway and treating obesity induces recovery. PLoS One. 2015;10:e0116540. doi:10.1371/journal.pone.0116540
  • Hurrell BP, Galle-Treger L, Jahani PS, et al. TNFR2 signaling enhances ILC2 survival, function, and induction of airway hyperreactivity. Cell Rep. 2019;29(13):4509–4524.e5. PMID: 31875557; PMCID: PMC6940205. doi:10.1016/j.celrep.2019.11.102
  • Lugogo N, Francisco D, Addison KJ, et al. Obese asthmatic patients have decreased surfactant protein A levels: mechanisms and implications. J Allergy Clin Immunol. 2018;141(3):918–926.e3. PMID: 28624607; PMCID: PMC5732097. doi:10.1016/j.jaci.2017.05.028
  • Gilmour JS, Coutinho AE, Cailhier JF, et al. Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J Immunol. 2006;176:7605–7611. doi:10.4049/jimmunol.176.12.7605
  • Freire-de-lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem. 2006;281:38376–38384. doi:10.1074/jbc.M605146200
  • Grace J, Mohan A, Lugogo NL. Obesity and adult asthma: diagnostic and management challenges. Curr Opin Pulm Med. 2019;25(1):44–50. PMID: 30394901. doi:10.1097/MCP.0000000000000531
  • Mathews JA, Krishnamoorthy N, Kasahara DI, et al. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect. 2017;125(2):246–253. doi:10.1289/EHP272
  • Bhatraju NK, Agrawal A. Mitochondrial dysfunction linking obesity and asthma. Ann Am Thorac Soc. 2017;14(Supplement_5):S368–S373. PMID: 29161084. doi:10.1513/AnnalsATS.201701-042AW
  • Cheng Z, Almeida FA. Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle. 2014;13:890–897. doi:10.4161/cc.28189
  • Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56. doi:10.1016/j.cmet.2007.10.013
  • Stuhlinger MC, Stanger O. Asymmetric dimethyl-L-arginine (ADMA): a possible link between homocyst(e)ine and endothelial dysfunction. Curr Drug Metab. 2005;6:3–14. doi:10.2174/1389200052997393
  • Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric oxide system and bronchial epithelium: more than a barrier. Front Physiol. 2021;12:687381. PMID: 34276407; PMCID: PMC8279772. doi:10.3389/fphys.2021.687381
  • Holguin F, Comhair SAA, Hazen SL, et al. An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. Am J Respir Crit Care Med. 2013;187:153–159. doi:10.1164/rccm.201207-1270OC
  • Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr Respir Rev. 2021;37:18–21. PMID: 32660723. doi:10.1016/j.prrv.2020.05.004
  • Konra´ Dova´ V, Copova´ C, Sukova´ B, Houstĕk J. Ultrastructure of the bronchial epithelium in three children with asthma. Pediatr Pulmonol. 1985;1:182–187. doi:10.1002/ppul.1950010403
  • Mabalirajan U, Dinda AK, Kumar S, et al. Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol. 2008;181:3540–3548. doi:10.4049/jimmunol.181.5.3540
  • Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. J Immunol. 2009;183:5379–5387. doi:10.4049/jimmunol.0900228
  • Ahmad T, Kumar M, Mabalirajan U, et al. Hypoxia response in asthma: differential modulation on inflammation and epithelial injury. Am J Respir Cell Mol Biol. 2012;47:1–10. doi:10.1165/rcmb.2011-0203OC
  • Winnica D, Corey C, Mullett S, et al. Bioenergetic differences in the airway epithelium of lean versus obese asthmatics are driven by nitric oxide and reflected in circulating platelets. Antioxid Redox Signal. 2019;31(10):673–686. doi:10.1089/ars.2018.7627
  • Komakula S, Khatri S, Mermis J, et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respir Res. 2007;16(8):32. doi:10.1186/1465-9921-8-32
  • Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016;71(6):741–757. doi:10.1111/all.12865
  • Mabalirajan U, Rehman R, Ahmad T, et al. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci Rep. 2013;3(1). doi:10.1038/srep01349
  • Holguin F, Khatri S, Serpil E, Powers RW, Trudeau J, Wenzel SE. Reduced L-arginine/ADMA as a potential mechanism to explain increased symptom severity and reduced atopy in late onset obese asthmatics. Am J Respit Crit Care Med. 2012;185:A2197.
  • Brown SD, Baxter KM, Stephenson ST, Esper AM, Brown LA, Fitzpatrick AM. Airway TGF-β1 and oxidant stress in children with severe asthma: association with airflow limitation. J Allergy Clin Immunol. 2012;129(2):388–96, 396.e1–8. PMID: 22206775; PMCID: PMC3268912. doi:10.1016/j.jaci.2011.11.037
  • Holguin F. Arginine and nitric oxide pathways in obesity-associated asthma. J Allergy (Cairo). 2013;2013:714595. PMID: 23710196; PMCID: PMC3654368. doi:10.1155/2013/714595
  • Wu W, Bang S, Bleecker ER, et al. Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma. Am J Respir Crit Care Med. 2019;199(11):1358–1367. doi:10.1164/rccm.201808-1543OC
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. doi:10.1016/S0140-6736(09)60326-3
  • Lu KD, Breysse PN, Diette GB, et al. Being overweight increases susceptibility to indoor pollutants among urban children with asthma. J Allergy Clin Immunol. 2013;131:1017–1023, 1023.e1–1023.e3. doi:10.1016/j.jaci.2012.12.1570
  • Alexeeff SE, Litonjua AA, Suh H, Sparrow D, Vokonas PS, Schwartz J. Ozone exposure and lung function: effect modified by obesity and airways hyperresponsiveness in the VA normative aging study. Chest. 2007;132:1890–1897. doi:10.1378/chest.07-1126
  • Arrieta MC, Finlay B. The intestinal microbiota and allergic asthma. J Infect. 2014;69(Suppl 1):S53e5. doi:10.1016/j.jinf.2014.07.015
  • Ygenetiuan Y, Ran N, Xiong L, et al. Obesity-related asthma: immune regulation and potential targeted therapies. J Immunol Res. 2018;2018:1943497. PMID: 30050954; PMCID: PMC6046139. doi:10.1155/2018/1943497
  • Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26:5–11. doi:10.1097/MOG.0b013e328333d751
  • Tavares da Silva S, Araújo Dos Santos C, Bressan J. Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutricion Hospitalaria. 2013;28(4):1039–1048. doi:10.3305/nh.2013.28.4.6525
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi:10.1038/4441022a
  • Catrysse L, van Loo G. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol. 2017;27(6):417–429. doi:10.1016/j.tcb.2017.01.006
  • Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. PMID: 18305141. doi:10.2337/db07-1403
  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi:10.1038/nature11552
  • Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–166. doi:10.1038/nm.3444
  • Cho Y, Shore SA. Obesity, asthma, and the microbiome. Physiology. 2016;31(2):108–116. PMID: 26889016; PMCID: PMC4888975. doi:10.1152/physiol.00045.2015
  • Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–573. PMID: 23828891; PMCID: PMC3807819. doi:10.1126/science.1241165
  • Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011;22(9):849–855. doi:10.1016/j.jnutbio.2010.07.009
  • Manni ML, Heinrich VA, Buchan GJ, et al. Nitroalkene fatty acids modulate bile acid metabolism and lung function in obese asthma. Sci Rep. 2021;11(1):17788. PMID: 34493738; PMCID: PMC8423735. doi:10.1038/s41598-021-96471-9
  • Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J, Linden A. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol. 2003;170:4665–4672. doi:10.4049/jimmunol.170.9.4665
  • Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun;2019. 1–14. doi:10.1038/s41467-018-07882-8
  • Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136:874e84. doi:10.1016/j.jaci.2015.05.044
  • Wood LG, Garg ML, Gibson PG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol. 2011;127:1133–1140. doi:10.1016/j.jaci.2011.01.036
  • Soutar A, Seaton A, Brown K. Bronchial reactivity and dietary antioxidants. Thorax. 1997;52:166–170. doi:10.1136/thx.52.2.166
  • Kien CL, Bunn JY, Fukagawa NK, et al. Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes. J Nutr Biochem. 2015;26:1599–1606. doi:10.1016/j.jnutbio.2015.07.014
  • Singh VP, Aggarwal R, Singh S, et al. Metabolic syndrome is associated with increased oxo-nitrative stress and asthma-like changes in lungs. PLoS One. 2015;10:e0129850. doi:10.1371/journal.pone.0129850
  • Tashiro H, Shore SA. Obesity and severe asthma. Allergol Int. 2019;68(2):135–142. PMID: 30509734; PMCID: PMC6540088. doi:10.1016/j.alit.2018.10.004
  • Wood LG, Li Q, Scott HA, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol. 2019;143:305e15. doi:10.1016/j.jaci.2018.04.037
  • Wood LG, Garg ML, Smart JM, Scott HA, Barker D, Gibson P. Manipulating antioxidant intake in asthma: a randomized controlled trial. Am J Clin Nutr. 2012;96:534–543. doi:10.3945/ajcn.111.032623
  • Wood LG, Garg ML, Powell H, Gibson PG. Lycopene-rich treatments modify noneosinophilic airway inflammation in asthma: proof of concept. Free Radic res. 2008;42:94–102. doi:10.1080/10715760701767307
  • Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16:341e9. doi:10.1111/obr.12239
  • Martineau AR, MacLaughlin BD, Hooper RL, et al. Double-blind randomised placebo-controlled trial of bolus-dose vitamin D3 supplementation in adults with asthma (ViDiAs). Thorax. 2015;70:451e7.
  • Aydin M, Koca C, Ozol D, et al. Interaction of metabolic syndrome with asthma in postmenopausal women: role of adipokines. Inflammation. 2013;36:1232–1238. doi:10.1007/s10753-013-9660-9
  • van Huisstede A, Cabezas MC, Birnie E, et al. Systemic inflammation and lung function impairment in morbidly obese subjects with the metabolic syndrome. J Obes. 2013;2013:131349. PMID: 23509614; PMCID: PMC3595660. doi:10.1155/2013/131349
  • Forno E, Han -Y-Y, Muzumdar RH, Celedón JC. Insulin resistance, metabolic syndrome, and lung function in US adolescents with and without asthma. J Allergy Clin Immunol. 2015;136(2):304–311.e8. doi:10.1016/j.jaci.2015.01.010
  • Forno E, Zhang P, Nouraie M, et al. The impact of bariatric surgery on asthma control differs among obese individuals with reported prior or current asthma, with or without metabolic syndrome. PLoS One. 2019;14(4):e0214730. doi:10.1371/journal.pone.0214730
  • Nie Z, Jacoby DB, Fryer AD. Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am J Respir Cell Mol Biol. 2014;51:251–261. doi:10.1165/rcmb.2013-0452OC
  • Leiria LO, Arantes-Costa FM, Calixto MC, et al. Increased airway reactivity and hyperinsulinemia in obese mice are linked by ERK signaling in brain stem cholinergic neurons. Cell Rep. 2015;11:934–943. doi:10.1016/j.celrep.2015.04.012
  • Thomsen SF, Ulrik CS, Kyvik KO, et al. Association between obesity and asthma in a twin cohort. Allergy. 2007;62(10):1199–1204. PMID: 17845591. doi:10.1111/j.1398-9995.2007.01480.x
  • Murphy A, Tantisira KG, Soto-Quirós ME, et al. PRKCA: a positional candidate gene for body mass index and asthma. Am J Hum Genet. 2009;85(1):87–96. PMID: 19576566; PMCID: PMC2706964. doi:10.1016/j.ajhg.2009.06.011
  • Castro-Giner F, Kogevinas M, Imboden M, et al. Joint effect of obesity and TNFA variability on asthma: two international cohort studies. Eur Respir J. 2009;33:1003–1009. PMID: 19196817. doi:10.1183/09031936.00140608
  • González JR, Cáceres A, Esko T, et al. A common 16p11.2 inversion underlies the joint susceptibility to asthma and obesity. Am J Hum Genet. 2014;94(3):361–372. PMID: 24560518; PMCID: PMC3951940. doi:10.1016/j.ajhg.2014.01.015
  • Cloutier MM, Baptist AP, Blake KV; Expert Panel Working Group of the National Heart L, Blood Institute a, coordinated National Asthma E. Focused updates to the asthma management guidelines: a report from the national asthma education and prevention program coordinating committee expert panel working group. J Allergy Clin Immunol. 2020;146(6):1217–1270. doi:10.1016/j.jaci.2020.10.003
  • Peerboom S, Graff S, Seidel L, et al. Predictors of a good response to inhaled corticosteroids in obesity-associated asthma. Biochem Pharmacol. 2020;179:113994. doi:10.1016/j.bcp.2020.113994
  • Tashiro H, Takahashi K, Sadamatsu H, et al. Biomarkers for overweight in adult-onset asthma. J Asthma Allergy. 2020;13:409–414. doi:10.2147/JAA.S276371
  • Camargo CA Jr, Boulet LP, Sutherland ER, et al. Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast. J Asthma. 2010;47(1):76–82. doi:10.3109/02770900903338494
  • Thompson CA, Eslick SR, Berthon BS, Wood LG. Asthma medication use in obese and healthy weight asthma: systematic review/meta-analysis. Eur Respir J. 2021;57(3):2000612. doi:10.1183/13993003.00612-2020
  • Luthe SK, Hirayama A, Goto T, Faridi MK, Camargo CA Jr, Hasegawa K. Association between obesity and acute severity among patients hospitalized for asthma exacerbation. J Allergy Clin Immunol Pract. 2018;6(6):1936–1941 e4. doi:10.1016/j.jaip.2018.02.001
  • Ilmarinen P, Vahatalo I, Tuomisto LE, Niemela O, Kankaanranta H. Long-term adherence to inhaled corticosteroids in clinical phenotypes of adult-onset asthma. J Allergy Clin Immunol Pract. 2021;9(9):3503–3505 e3. doi:10.1016/j.jaip.2021.04.057
  • Lefaudeux D, De Meulder B, Loza MJ, et al. U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797–1807. doi:10.1016/j.jaci.2016.08.048
  • Sutherland ER, Lehman EB, Teodorescu M, Wechsler ME, National Heart L. Blood Institute’s Asthma Clinical Research N. Body mass index and phenotype in subjects with mild-to-moderate persistent asthma. J Allergy Clin Immunol. 2009;123(6):1328–34 e1. doi:10.1016/j.jaci.2009.04.005
  • Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495–503. doi:10.1183/09031936.06.00077205
  • Boulet LP, Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir Med. 2007;101(11):2240–2247. doi:10.1016/j.rmed.2007.06.031
  • Sutherland ER, Goleva E, Strand M, Beuther DA, Leung DY. Body mass and glucocorticoid response in asthma. Am J Respir Crit Care Med. 2008;178(7):682–687. doi:10.1164/rccm.200801-076OC
  • Al Heialy S, Gaudet M, Ramakrishnan RK, et al. Contribution of IL-17 in steroid hyporesponsiveness in obese asthmatics through dysregulation of glucocorticoid receptors alpha and beta. Front Immunol. 2020;11:1724. doi:10.3389/fimmu.2020.01724
  • Demarche SF, Schleich FN, Henket MA, Paulus VA, Van Hees TJ, Louis RE. Effectiveness of inhaled corticosteroids in real life on clinical outcomes, sputum cells and systemic inflammation in asthmatics: a retrospective cohort study in a secondary care centre. BMJ Open. 2017;7(11):e018186. doi:10.1136/bmjopen-2017-018186
  • Yadav UC, Srivastava SK. Cysteinyl leukotrienes (CysLTs): role in obesity-induced asthma. Curr Mol Med. 2015;15(7):598–605. doi:10.2174/1566524015666150831130954
  • Farzan S, Khan S, Elera C, Tsang J, Akerman M, DeVoti J. Effectiveness of montelukast in overweight and obese atopic asthmatics. Ann Allergy Asthma Immunol. 2017;119(2):189–190. doi:10.1016/j.anai.2017.05.024
  • Sutherland ER, Camargo CA Jr, Busse WW, et al. Comparative effect of body mass index on response to asthma controller therapy. Allergy Asthma Proc. 2010;31(1):20–25. doi:10.2500/aap.2010.31.3307
  • Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809. PMID: 33979488. doi:10.1056/NEJMoa2034975
  • Sposato B, Scalese M, Milanese M, et al. Factors reducing omalizumab response in severe asthma. Eur J Intern Med. 2018;52:78–85. doi:10.1016/j.ejim.2018.01.026
  • Busse WW, Paggiaro P, Muñoz X, et al. Impact of baseline patient characteristics on dupilumab efficacy in type 2 asthma. Eur Respir J. 2021;58:2004605. doi:10.1183/13993003.04605-2020
  • Gibson PG, Prazma CM, Chupp GL, et al. Mepolizumab improves clinical outcomes in patients with severe asthma and comorbid conditions. Respir Res. 2021;22:171. doi:10.1186/s12931-021-01746-4
  • Li X, Song Y, Ma X. Lactobacillus plantarum and Lactobacillus fermentum alone or in combination regulate intestinal flora composition and systemic immunity to alleviate obesity syndrome in high-fat diet rat. Int J Food Sci Technol. 2018;53(1):137–146. doi:10.1111/ijfs.13567
  • Saeed MA, Gribben KC, Alam M, Lyden ER, Hanson CK, LeVan TD. Association of dietary fiber on asthma, respiratory symptoms, and inflammation in the adult national health and nutrition examination survey population. Ann Am Thorac Soc. 2020;17(9):1062–1068. PMID: 32369709. doi:10.1513/AnnalsATS.201910-776OC
  • Gutkowski P, Madalinski K, Grek M, Dmenska H, Syczewska M, Michalkiewicz J. Effect of orally administered probiotic strains “Lactobacillus” and “Bifidobacterium” in children with atopic asthma. Central-Eur J Immunol. 2010;35:233–238.
  • Huang CF, Chie WC, Wang IJ. Efficacy of lactobacillus administration in school-age children with asthma: a randomized, placebo-controlled trial. Nutrients. 2018;10(11):1678. PMID: 30400588; PMCID: PMC6265750. doi:10.3390/nu10111678
  • Chen YS, Jan RL, Lin YL, Chen HH, Wang JY. Randomized placebo-controlled trial of lactobacillus on asthmatic children with allergic rhinitis. Pediatr Pulmonol. 2010;45(11):1111–1120. PMID: 20658483. doi:10.1002/ppul.21296
  • Holguin F, Grasemann H, Sharma S, et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight. 2019;4(24):e131733. PMID: 31714895; PMCID: PMC6975256. doi:10.1172/jci.insight.131733
  • Stoodley I, Williams L, Thompson C, Scott H, Wood L. Evidence for lifestyle interventions in asthma. Breathe. 2019;15(2):e50–e61. doi:10.1183/20734735.0019-2019
  • Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD. Effects of weight loss on airway responsiveness in obese adults with asthma: does weight loss lead to reversibility of asthma? Chest. 2015;147:1582e90. doi:10.1378/chest.14-3105
  • Özbey Ü, Balaban S, Sözener ZÇ, Uçar A, Mungan D, Mısırlıgil Z. The effects of diet-induced weight loss on asthma control and quality of life in obese adults with asthma: a randomized controlled trial. J Asthma. 2020;57(6):618–626. doi:10.1080/02770903.2019.1590594
  • Freitas PD, Silva AG, Ferreira PG, et al. Exercise improves physical activity and comorbidities in obese adults with asthma. Med Sci Sports Exerc. 2018;50(7):1367–1376. doi:10.1249/MSS.0000000000001574
  • Lim R. Bariatric procedures for the management of severe obesity: descriptions. In: Post TW, editor. UpToDate. UpToDate; 2021.
  • Upala S, Thavaraputta S, Sanguankeo A. Improvement in pulmonary function in asthmatic patients after bariatric surgery: a systematic review and meta-analysis. Surg Obes Relat Dis. 2019;15(5):794–803. doi:10.1016/j.soard.2018.12.018
  • Hossain N, Arhi C, Borg CM. Is bariatric surgery better than nonsurgical weight loss for improving asthma control? a systematic review. Obes Surg. 2021;31(4):1810–1832. doi:10.1007/s11695-021-05255-7
  • Nyenhuis SM, Dixon AE, Ma J. Impact of lifestyle interventions targeting healthy diet, physical activity, and weight loss on asthma in adults: what is the evidence? J Allergy Clin Immunol Pract. 2018;6(3):751–763. doi:10.1016/j.jaip.2017.10.026