251
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis

ORCID Icon, & ORCID Icon
Pages 1681-1700 | Received 01 Sep 2022, Accepted 11 Nov 2022, Published online: 23 Nov 2022

References

  • Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl 1):8–16. doi:10.1159/000370220
  • Lyons JJ, Milner JD, Stone KD. Atopic dermatitis in children: clinical features, pathophysiology, and treatment. Immunol Allergy Clin North Am. 2015;35(1):161–183. doi:10.1016/j.iac.2014.09.008
  • Xu X, van Galen LS, Koh MJA, et al. Factors influencing quality of life in children with atopic dermatitis and their caregivers: a cross-sectional study. Sci Rep. 2019;9(1):15990. doi:10.1038/s41598-019-51129-5
  • Smith begolka W, Chovatiya R, Thibau IJ, Silverberg JI. Financial burden of atopic dermatitis out-of-pocket health care expenses in the United States. Dermatitis. 2021;32(1S):S62–S70. doi:10.1097/DER.0000000000000715
  • Busse WW. The atopic march: fact or folklore? Ann Allergy Asthma Immunol. 2018;120(2):116–118. doi:10.1016/j.anai.2017.10.029
  • Ramirez-Marin HA, Singh AM, Ong PY, Silverberg JI. Food allergy testing in atopic dermatitis. JAAD Int. 2022;9:50–56. doi:10.1016/j.jdin.2022.08.004
  • Singh AM, Evans MD, Gangnon R, et al. Expression patterns of atopic eczema and respiratory illnesses in a high-risk birth cohort. J Allergy Clin Immunol. 2010;125(2):491–493 e494. doi:10.1016/j.jaci.2009.11.026
  • Lee HH, Patel KR, Singam V, Rastogi S, Silverberg JI. A systematic review and meta-analysis of the prevalence and phenotype of adult-onset atopic dermatitis. J Am Acad Dermatol. 2019;80(6):1526–1532 e1527. doi:10.1016/j.jaad.2018.05.1241
  • Vakharia PP, Silverberg JI. Adult-onset atopic dermatitis: characteristics and management. Am J Clin Dermatol. 2019;20(6):771–779. doi:10.1007/s40257-019-00453-7
  • Huang AH, Roh YS, Sutaria N, et al. Real-world comorbidities of atopic dermatitis in the pediatric ambulatory population in the United States. J Am Acad Dermatol. 2021;85(4):893–900. doi:10.1016/j.jaad.2021.03.016
  • Ren Z, Silverberg JI. Association of atopic dermatitis with bacterial, fungal, viral, and sexually transmitted skin infections. Dermatitis. 2020;31(2):157–164. doi:10.1097/DER.0000000000000526
  • Capozza K, Gadd H, Kelley K, Russell S, Shi V, Schwartz A. Insights from caregivers on the impact of pediatric atopic dermatitis on families: “I’m tired, overwhelmed, and feel like I’m failing as a mother”. Dermatitis. 2020;31(3):223–227. doi:10.1097/DER.0000000000000582
  • Kim RW, Barta K, Begolka WS, et al. Qualitative analysis of the impact of atopic dermatitis on caregivers. Br J Dermatol. 2022. doi:10.1111/bjd.21828
  • Esaki H, Brunner PM, Renert-Yuval Y, et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138(6):1639–1651. doi:10.1016/j.jaci.2016.07.013
  • Nygaard U, Hvid M, Johansen C, et al. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J Eur Acad Dermatol Venereol. 2016;30(11):1930–1938. doi:10.1111/jdv.13679
  • Shi B, Bangayan NJ, Curd E, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233–1236. doi:10.1016/j.jaci.2016.04.053
  • Kroner JW, Baatyrbek Kyzy A, Burkle JW, et al. Atopic dermatitis independently increases sensitization above parental atopy: the MPAACH study. J Allergy Clin Immunol. 2020;145(5):1464–1466. doi:10.1016/j.jaci.2020.01.041
  • Sasaki T, Furusyo N, Shiohama A, et al. Filaggrin loss-of-function mutations are not a predisposing factor for atopic dermatitis in an Ishigaki Island under subtropical climate. J Dermatol Sci. 2014;76(1):10–15. doi:10.1016/j.jdermsci.2014.06.004
  • Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a Phase 1 randomized clinical trial. Nat Med. 2021;27(4):700–709. doi:10.1038/s41591-021-01256-2
  • Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–337. doi:10.1007/s12016-016-8548-5
  • Grice K, Sattar H, Baker H, Sharratt M. The relationship of transepidermal water loss to skin temperature in psoriasis and eczema. J Invest Dermatol. 1975;64(5):313–315. doi:10.1111/1523-1747.ep12512258
  • Hon KL, Lam PH, Ng WG, et al. Age, sex, and disease status as determinants of skin hydration and transepidermal water loss among children with and without eczema. Hong Kong Med J. 2020;26(1):19–26. doi:10.12809/hkmj198150
  • Horimukai K, Morita K, Narita M, et al. Transepidermal water loss measurement during infancy can predict the subsequent development of atopic dermatitis regardless of filaggrin mutations. Allergol Int. 2016;65(1):103–108. doi:10.1016/j.alit.2015.09.004
  • Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122(Pt 9):1285–1294. doi:10.1242/jcs.033969
  • Abhishek S, Palamadai Krishnan S. Epidermal differentiation complex: a review on its epigenetic regulation and potential drug targets. Cell J. 2016;18(1):1–6. doi:10.22074/cellj.2016.3980
  • Smieszek SP, Welsh S, Xiao C, et al. Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status. Sci Rep. 2020;10(1):2721. doi:10.1038/s41598-020-59627-7
  • Flohr C, England K, Radulovic S, et al. Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol. 2010;163(6):1333–1336. doi:10.1111/j.1365-2133.2010.10068.x
  • Sandilands A, Terron-Kwiatkowski A, Hull PR, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007;39(5):650–654. doi:10.1038/ng2020
  • Cai SC, Chen H, Koh WP, et al. Filaggrin mutations are associated with recurrent skin infection in Singaporean Chinese patients with atopic dermatitis. Br J Dermatol. 2012;166(1):200–203. doi:10.1111/j.1365-2133.2011.10541.x
  • Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184–1190 e1183. doi:10.1016/j.jaci.2010.09.015
  • Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–762. doi:10.1038/jid.2011.393
  • Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–1327. doi:10.1056/NEJMra1011040
  • Omori-Miyake M, Yamashita M, Tsunemi Y, Kawashima M, Yagi J. In vitro assessment of IL-4- or IL-13-mediated changes in the structural components of keratinocytes in mice and humans. J Invest Dermatol. 2014;134(5):1342–1350. doi:10.1038/jid.2013.503
  • Cornelissen C, Marquardt Y, Czaja K, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012;129(2):426–433, 433 e421–428. doi:10.1016/j.jaci.2011.10.042
  • Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Skin barrier abnormalities and immune dysfunction in atopic dermatitis. Int J Mol Sci. 2020;21(8):115.
  • Pellerin L, Henry J, Hsu CY, et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol. 2013;131(4):1094–1102. doi:10.1016/j.jaci.2012.12.1566
  • Marenholz I, Rivera VA, Esparza-Gordillo J, et al. Association screening in the Epidermal Differentiation Complex (EDC) identifies an SPRR3 repeat number variant as a risk factor for eczema. J Invest Dermatol. 2011;131(8):1644–1649. doi:10.1038/jid.2011.90
  • De Benedetto A, Rafaels NM, McGirt LY, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127(3):773–786 e771–777. doi:10.1016/j.jaci.2010.10.018
  • Asad S, Winge MC, Wahlgren CF, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol. 2016;30(11):1939–1941. doi:10.1111/jdv.13806
  • Saunders SP, Goh CS, Brown SJ, et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol. 2013;132(5):1121–1129. doi:10.1016/j.jaci.2013.08.046
  • Sasaki T, Shiohama A, Kubo A, et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol. 2013;132(5):1111–1120 e1114. doi:10.1016/j.jaci.2013.08.027
  • Saunders SP, Floudas A, Moran T, et al. Dysregulated skin barrier function in Tmem79 mutant mice promotes IL-17A-dependent spontaneous skin and lung inflammation. Allergy. 2020;75(12):3216–3227. doi:10.1111/all.14488
  • Rasool R, Shafi T, Bhat IA, et al. Association of epidermal differentiation complex (EDC) genetic variants with House Dust Mite sensitization in Atopic Dermatitis Patients. Immunobiology. 2022;227(3):152214. doi:10.1016/j.imbio.2022.152214
  • Sliz E, Huilaja L, Pasanen A, et al. Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis. J Allergy Clin Immunol. 2022;149(3):1105–1112 e1109. doi:10.1016/j.jaci.2021.07.043
  • Romanowska M, Al Yacoub N, Seidel H, et al. PPARdelta enhances keratinocyte proliferation in psoriasis and induces heparin-binding EGF-like growth factor. J Invest Dermatol. 2008;128(1):110–124. doi:10.1038/sj.jid.5700943
  • Stevens ML, Zhang Z, Johansson E, et al. Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun. 2020;11(1):4092. doi:10.1038/s41467-020-17895-x
  • Blunder S, Pavel P, Minzaghi D, Dubrac S. PPARdelta in affected atopic dermatitis and psoriasis: a possible role in metabolic reprograming. Int J Mol Sci. 2021;22(14):7354. doi:10.3390/ijms22147354
  • Romanowska M, Reilly L, Palmer CN, Gustafsson MC, Foerster J. Activation of PPARbeta/delta causes a psoriasis-like skin disease in vivo. PLoS One. 2010;5(3):e9701. doi:10.1371/journal.pone.0009701
  • Morgan E, Kannan-Thulasiraman P, Noy N. Involvement of fatty acid binding protein 5 and PPAR β/δ in prostate cancer cell growth. PPAR Res. 2010;2010:1–9. doi:10.1155/2010/234629
  • Lee J, Kim B, Chu H, et al. FABP5 as a possible biomarker in atopic march: FABP5-induced Th17 polarization, both in mouse model and human samples. EBioMedicine. 2020;58:102879. doi:10.1016/j.ebiom.2020.102879
  • Elias MS, Wright SC, Remenyi J, et al. EMSY expression affects multiple components of the skin barrier with relevance to atopic dermatitis. J Allergy Clin Immunol. 2019;144(2):470–481. doi:10.1016/j.jaci.2019.05.024
  • de Koning HD, Kamsteeg M, Rodijk-Olthuis D, et al. Epidermal expression of host response genes upon skin barrier disruption in normal skin and uninvolved skin of psoriasis and atopic dermatitis patients. J Invest Dermatol. 2011;131(1):263–266. doi:10.1038/jid.2010.278
  • Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol. 2004;113(3):565–567. doi:10.1016/j.jaci.2003.12.583
  • Oh DY, Schumann RR, Hamann L, Neumann K, Worm M, Heine G. Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy. 2009;64(11):1608–1615. doi:10.1111/j.1398-9995.2009.02066.x
  • Niebuhr M, Heratizadeh A, Wichmann K, Satzger I, Werfel T. Intrinsic alterations of pro-inflammatory mediators in unstimulated and TLR-2 stimulated keratinocytes from atopic dermatitis patients. Exp Dermatol. 2011;20(6):468–472. doi:10.1111/j.1600-0625.2011.01277.x
  • Salpietro C, Rigoli L, Del Giudice MM. Miraglia Del Giudice M, et al. TLR2 and TLR4 gene polymorphisms and atopic dermatitis in Italian children: a multicenter study. Int J Immunopathol Pharmacol. 2011;24(4 Suppl):33–40. doi:10.1177/03946320110240S408
  • Can C, Yazicioglu M, Gurkan H, Tozkir H, Gorgulu A, Sut NH. Lack of association between toll-like receptor 2 polymorphisms (R753Q and A-16934T) and atopic dermatitis in children from Thrace region of Turkey. Balkan Med J. 2017;34(3):232–238. doi:10.4274/balkanmedj.2015.1253
  • Kaesler S, Volz T, Skabytska Y, et al. Toll-like receptor 2 ligands promote chronic atopic dermatitis through IL-4-mediated suppression of IL-10. J Allergy Clin Immunol. 2014;134(1):92–99. doi:10.1016/j.jaci.2014.02.017
  • Novak N, Yu CF, Bussmann C, et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy. 2007;62(7):766–772. doi:10.1111/j.1398-9995.2007.01358.x
  • Levchenko LY, Izmailova OV, Shlykova OA et al. TLR4 896A/G gene polymorphism, rather than the TLR4 1196C/T and TLR2 2258G/Agene polymorphisms, determines severe and aggravated course of atopic dermatitis in children. Cytol. Genet. 2013;47(3):167–173. doi:10.3103/S0095452713030067
  • Keestra-Gounder AM, Tsolis RM. NOD1 and NOD2: beyond peptidoglycan sensing. Trends Immunol. 2017;38(10):758–767. doi:10.1016/j.it.2017.07.004
  • Weidinger S, Klopp N, Rummler L, et al. Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol. 2005;116(1):177–184. doi:10.1016/j.jaci.2005.02.034
  • Negroni A, Pierdomenico M, Cucchiara S, Stronati L. NOD2 and inflammation: current insights. J Inflamm Res. 2018;11:49–60. doi:10.2147/JIR.S137606
  • Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol. 2016;91(4):472–478. doi:10.1590/abd1806-4841.20164412
  • Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human beta-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190(2):155–166. doi:10.1111/cei.13013
  • Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–1160. doi:10.1056/NEJMoa021481
  • Nomura I, Goleva E, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171(6):3262–3269. doi:10.4049/jimmunol.171.6.3262
  • Hata TR, Kotol P, Boguniewicz M, et al. History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol. 2010;163(3):659–661. doi:10.1111/j.1365-2133.2010.09892.x
  • Kim E, Lee JE, Namkung JH, et al. Single nucleotide polymorphisms and the haplotype in the DEFB1 gene are associated with atopic dermatitis in a Korean population. J Dermatol Sci. 2009;54(1):25–30. doi:10.1016/j.jdermsci.2008.12.005
  • Segat L, Guimaraes RL, Brandao LA, et al. Beta defensin-1 gene (DEFB1) polymorphisms are not associated with atopic dermatitis in children and adolescents from northeast Brazil (Recife, Pernambuco). Int J Dermatol. 2010;49(6):653–657. doi:10.1111/j.1365-4632.2009.04343.x
  • Leung DY. Why is eczema herpeticum unexpectedly rare? Antiviral Res. 2013;98(2):153–157. doi:10.1016/j.antiviral.2013.02.010
  • Bin L, Edwards MG, Heiser R, et al. Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol. 2014;134(4):848–855. doi:10.1016/j.jaci.2014.07.018
  • Gao PS, Leung DY, Rafaels NM, et al. Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Invest Dermatol. 2012;132(3 Pt 1):650–657. doi:10.1038/jid.2011.374
  • Bin L, Malley C, Taylor P, et al. Whole genome sequencing identifies novel genetic mutations in patients with eczema herpeticum. Allergy. 2021;76(8):2510–2523. doi:10.1111/all.14762
  • Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol. 2022;13:945063. doi:10.3389/fimmu.2022.945063
  • Vaseghi-Shanjani M, Smith KL, Sara RJ, et al. Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol. 2021;148(5):1130–1139. doi:10.1016/j.jaci.2021.08.008
  • Vaseghi-Shanjani M, Snow AL, Margolis DJ, et al. Atopy as immune dysregulation: offender genes and targets. J Allergy Clin Immunol Pract. 2022;10(7):1737–1756. doi:10.1016/j.jaip.2022.04.001
  • Albanesi C, Fairchild HR, Madonna S, et al. IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol. 2007;179(2):984–992. doi:10.4049/jimmunol.179.2.984
  • Shang H, Cao XL, Wan YJ, Meng J, Guo LH. IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers. 2016;2016:1021942. doi:10.1155/2016/1021942
  • He JQ, Chan-Yeung M, Becker AB, et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun. 2003;4(5):385–389. doi:10.1038/sj.gene.6363985
  • Sokolowska-Wojdylo M, Glen J, Zablotna M, et al. The frequencies of haplotypes defined by three polymorphisms of the IL-31 gene: −1066, −2057, and IVS2+12 in Polish patients with atopic dermatitis. Int J Dermatol. 2015;54(1):62–67. doi:10.1111/ijd.12666
  • Lan CC, Tu HP, Wu CS, et al. Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp Dermatol. 2011;20(12):975–979. doi:10.1111/j.1600-0625.2011.01374.x
  • Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol. 2021;17(8):835–852. doi:10.1080/1744666X.2021.1940962
  • Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–680. doi:10.1038/ni805
  • Nakajima S, Igyarto BZ, Honda T, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–1055 e1046. doi:10.1016/j.jaci.2012.01.063
  • Bell BD, Kitajima M, Larson RP, et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol. 2013;14(4):364–371. doi:10.1038/ni.2541
  • Rochman Y, Kashyap M, Robinson GW, et al. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc Natl Acad Sci U S A. 2010;107(45):19455–19460. doi:10.1073/pnas.1008271107
  • Margolis DJ, Kim B, Apter AJ, et al. Thymic stromal lymphopoietin variation, filaggrin loss of function, and the persistence of atopic dermatitis. JAMA Dermatol. 2014;150(3):254–259. doi:10.1001/jamadermatol.2013.7954
  • Berna R, Mitra N, Lou C, et al. TSLP and IL-7R variants are associated with persistent atopic dermatitis. J Invest Dermatol. 2021;141(2):446–450 e442. doi:10.1016/j.jid.2020.05.119
  • Gao PS, Rafaels NM, Mu D, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol. 2010;125(6):1403–1407 e1404. doi:10.1016/j.jaci.2010.03.016
  • Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT. 2013;2(4):e25301. doi:10.4161/jkst.25301
  • Makita S, Takatori H, Matsuki A, et al. T-bet and STAT6 coordinately suppress the development of IL-9-mediated atopic dermatitis-like skin inflammation in mice. J Invest Dermatol. 2021;141(5):1274–1285 e1275. doi:10.1016/j.jid.2020.08.029
  • Howell M D et al. (2011). The signal transducer and activator of transcription 6 gene (STAT6) increases the propensity of patients with atopic dermatitis toward disseminated viral skin infections. J Allergy Clin Immunol, 128(5), 1006–14. 10.1016/j.jaci.2011.06.003
  • Folster-Holst R, Moises HW, Yang L, Fritsch W, Weissenbach J, Christophers E. Linkage between atopy and the IgE high-affinity receptor gene at 11q13 in atopic dermatitis families. Hum Genet. 1998;102(2):236–239. doi:10.1007/s004390050685
  • Cookson WO, Sharp PA, Faux JA, Hopkin JM. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q. Lancet. 1989;1(8650):1292–1295. doi:10.1016/S0140-6736(89)92687-1
  • Jordan CT, Cao L, Roberson ED, et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am J Hum Genet. 2012;90(5):796–808. doi:10.1016/j.ajhg.2012.03.013
  • Israel L, Mellett M. Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. Front Immunol. 2018;9:2239. doi:10.3389/fimmu.2018.02239
  • Heo WI, Park KY, Lee MK, Bae YJ, Moon NJ, Seo SJ. Association of DOCK8, IL17RA, and KLK12 polymorphisms with atopic dermatitis in Koreans. Ann Dermatol. 2020;32(3):197–205. doi:10.5021/ad.2020.32.3.197
  • Nousbeck J, Irvine AD. Atopic dermatitis according to GARP: new mechanistic insights in disease pathogenesis. J Invest Dermatol. 2016;136(12):2340–2341. doi:10.1016/j.jid.2016.08.020
  • Fridrich S, Hahn SA, Linzmaier M, et al. How soluble GARP enhances TGFbeta activation. PLoS One. 2016;11(4):e0153290. doi:10.1371/journal.pone.0153290
  • Chen XY, Zhu XJ, Chen M, et al. GARP polymorphisms associated with susceptibility to house dust mite-sensitized persistent allergic rhinitis in a Chinese population. J Asthma Allergy. 2022;15:1369–1381. doi:10.2147/JAA.S366815
  • Wollenberg A, Thomsen SF, Lacour JP, Jaumont X, Lazarewicz S. Targeting immunoglobulin E in atopic dermatitis: a review of the existing evidence. World Allergy Organ J. 2021;14(3):100519. doi:10.1016/j.waojou.2021.100519
  • Arthur GK, Cruse G. Regulation of trafficking and signaling of the high affinity IgE receptor by FcepsilonRIbeta and the potential impact of FcepsilonRIbeta splicing in allergic inflammation. Int J Mol Sci. 2022;23(2):788. doi:10.3390/ijms23020788
  • Zeller S, Rhyner C, Meyer N, Schmid-Grendelmeier P, Akdis CA, Crameri R. Exploring the repertoire of IgE-binding self-antigens associated with atopic eczema. J Allergy Clin Immunol. 2009;124(2):278–285, 285 e271–277. doi:10.1016/j.jaci.2009.05.015
  • Vuckovic D, Bao EL, Akbari P, et al. The polygenic and monogenic basis of blood traits and diseases. Cell. 2020;182(5):1214–1231 e1211. doi:10.1016/j.cell.2020.08.008
  • Simon D, Braathen LR, Simon HU. Eosinophils and atopic dermatitis. Allergy. 2004;59(6):561–570. doi:10.1111/j.1398-9995.2004.00476.x
  • Arriba-Mendez S, Sanz C, Isidoro-Garcia M, et al. 927T>C polymorphism of the cysteinyl-leukotriene type-1 receptor (CYSLTR1) gene in children with asthma and atopic dermatitis. Pediatr Allergy Immunol. 2006;17(5):323–328. doi:10.1111/j.1399-3038.2006.00416.x
  • Acevedo N, Benfeitas R, Katayama S, et al. Epigenetic alterations in skin homing CD4(+)CLA(+) T cells of atopic dermatitis patients. Sci Rep. 2020;10(1):18020. doi:10.1038/s41598-020-74798-z
  • Kim HO, Kim JH, Chung BY, Choi MG, Park CW. Increased expression of the aryl hydrocarbon receptor in patients with chronic inflammatory skin diseases. Exp Dermatol. 2014;23(4):278–281. doi:10.1111/exd.12350
  • Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental pollutants and the immune response. Nat Immunol. 2020;21(12):1486–1495. doi:10.1038/s41590-020-0802-6
  • Hidaka T, Ogawa E, Kobayashi EH, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18(1):64–73. doi:10.1038/ni.3614
  • Tauchi M, Hida A, Negishi T, et al. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol Cell Biol. 2005;25(21):9360–9368. doi:10.1128/MCB.25.21.9360-9368.2005
  • Schmidt AD, de Guzman Strong C. Current understanding of epigenetics in atopic dermatitis. Exp Dermatol. 2021;30(8):1150–1155. doi:10.1111/exd.14392
  • Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–859. doi:10.1101/gr.131029.111
  • Traisaeng S, Herr DR, Kao HJ, Chuang TH, Huang CM. A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins. 2019;11(6):311. doi:10.3390/toxins11060311
  • Hsu AP, Davis J, Puck JM, et al. STAT3 hyper IgE syndrome. In: Adam MP, Everman DB, Mirzaa GM, editors. Genereviews((R)). Seattle (WA): MedlinePlus; 1993.
  • Nelson RW, Geha RS, McDonald DR. Inborn errors of the immune system associated with atopy. Front Immunol. 2022;13:860821. doi:10.3389/fimmu.2022.860821
  • Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J Clin Immunol. 1999;19(2):87–97. doi:10.1023/A:1020550432126
  • Malik MA, Masab M. Wiskott-Aldrich Syndrome. Treasure Island (FL): StatPearls; 2022.
  • Hershfield M. Adenosine deaminase deficiency. In: Adam MP, Everman DB, Mirzaa GM, editors. Genereviews((R)). Seattle (WA): MedlinePlus; 1993.
  • Tan QKG, Louie RJ, Sleasman JW, et al. IPEX syndrome. In: Adam MP, Everman DB, Mirzaa GM, editors. Genereviews((R)). Seattle (WA): MedlinePlus; 1993.
  • Stray-Pedersen A, Backe PH, Sorte HS, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet. 2014;95(1):96–107. doi:10.1016/j.ajhg.2014.05.007
  • Zhang Y, Yu X, Ichikawa M, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400–1409, 1409 e1401–1405. doi:10.1016/j.jaci.2014.02.013
  • Alrumayyan N, Slauenwhite D, McAlpine SM, et al. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. Allergy Asthma Clin Immunol. 2022;18(1):17. doi:10.1186/s13223-022-00658-2
  • Samuelov L, Sarig O, Harmon RM, et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet. 2013;45(10):1244–1248. doi:10.1038/ng.2739
  • Liang J, Li C, Zhang Z, et al. Severe dermatitis, multiple allergies and metabolic wasting (SAM) syndrome caused by de novo mutation in the DSP gene misdiagnosed as generalized pustular psoriasis and treatment of Acitretin with gabapentin. J Dermatol. 2019;46(7):622–625. doi:10.1111/1346-8138.14925
  • Raghunath M, Tontsidou L, Oji V, et al. SPINK5 and Netherton syndrome: novel mutations, demonstration of missing LEKTI, and differential expression of transglutaminases. J Invest Dermatol. 2004;123(3):474–483. doi:10.1111/j.0022-202X.2004.23220.x
  • Klammt J, Neumann D, Gevers EF, et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun. 2018;9(1):2105. doi:10.1038/s41467-018-04521-0
  • Pugliese-Pires PN, Tonelli CA, Dora JM, et al. A novel STAT5B mutation causing GH insensitivity syndrome associated with hyperprolactinemia and immune dysfunction in two male siblings. Eur J Endocrinol. 2010;163(2):349–355. doi:10.1530/EJE-10-0272
  • Sharma M, Lu HY, Vaseghi-Shanjani M, et al. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. medRxiv. 2022;2022:22274265.
  • Gaudinski MR, Milner JD. Atopic dermatitis and allergic urticaria: cutaneous manifestations of immunodeficiency. Immunol Allergy Clin North Am. 2017;37(1):1–10. doi:10.1016/j.iac.2016.08.016
  • Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2(3):e24137. doi:10.4161/jkst.24137
  • Hashimoto T, Sakai K, Yosipovitch G, Akiyama T. Signal transducer and activator of transcription 3 in keratinocytes regulates histaminergic itch but not nonhistaminergic itch. Acta Derm Venereol. 2019;99(10):901–902. doi:10.2340/00015555-3229
  • Baik M, Yu JH, Hennighausen L. Growth hormone-STAT5 regulation of growth, hepatocellular carcinoma, and liver metabolism. Ann N Y Acad Sci. 2011;1229:29–37. doi:10.1111/j.1749-6632.2011.06100.x
  • Kim CH. FOXP3 and its role in the immune system. Adv Exp Med Biol. 2009;665:17–29.
  • Bosa L, Batura V, Colavito D, et al. Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease. Sci Rep. 2021;11(1):5945. doi:10.1038/s41598-021-85399-9
  • Cristalli G, Costanzi S, Lambertucci C, et al. Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev. 2001;21(2):105–128. doi:10.1002/1098-1128(200103)21:2<105::AID-MED1002>3.0.CO;2-U
  • Lawrence MG, Barber JS, Sokolic RA, et al. Elevated IgE and atopy in patients treated for early-onset ADA-SCID. J Allergy Clin Immunol. 2013;132(6):1444–1446. doi:10.1016/j.jaci.2013.05.040
  • Helmink BA, Sleckman BP. The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev Immunol. 2012;30:175–202. doi:10.1146/annurev-immunol-030409-101320
  • Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol. 2017;14(5):406–411. doi:10.1038/cmi.2017.9
  • Kulkarni K, Yang J, Zhang Z, Barford D. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem. 2011;286(28):25341–25351. doi:10.1074/jbc.M111.236455
  • Tangye SG, Pillay B, Randall KL, et al. Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J Allergy Clin Immunol. 2017;139(3):933–949. doi:10.1016/j.jaci.2016.07.016
  • Sun X, Wei Y, Lee PP, Ren B, Liu C. The role of WASp in T cells and B cells. Cell Immunol. 2019;341:103919. doi:10.1016/j.cellimm.2019.04.007
  • Sassi A, Lazaroski S, Wu G, et al. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol. 2014;133(5):1410–1419, 1419 e1411–1413. doi:10.1016/j.jaci.2014.02.025
  • Deraison C, Bonnart C, Lopez F, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–3619. doi:10.1091/mbc.e07-02-0124
  • Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175–178. doi:10.1038/ng728
  • Polivka L, Hadj-Rabia S, Bal E, et al. Epithelial barrier dysfunction in desmoglein-1 deficiency. J Allergy Clin Immunol. 2018;142(2):702–706 e707. doi:10.1016/j.jaci.2018.04.007
  • Arehart CH, Daya M, Campbell M, et al. Polygenic prediction of atopic dermatitis improves with atopic training and filaggrin factors. J Allergy Clin Immunol. 2022;149(1):145–155. doi:10.1016/j.jaci.2021.05.034
  • Wray NR, Kemper KE, Hayes BJ, Goddard ME, Visscher PM. Complex trait prediction from genome data: contrasting EBV in livestock to PRS in humans: genomic prediction. Genetics. 2019;211(4):1131–1141. doi:10.1534/genetics.119.301859
  • Brown SJ. Atopic eczema: how genetic studies can contribute to the understanding of this complex trait. J Investig Dermatol. 2022;142(4):1015–1019. doi:10.1016/j.jid.2021.12.020
  • Chen Y, Chen W. Genome-wide integration of genetic and genomic studies of atopic dermatitis: insights into genetic architecture and pathogenesis. J Invest Dermatol. 2022. doi:10.1016/j.jid.2022.04.021
  • Baurecht H, Hotze M, Brand S, et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms. Am J Hum Genet. 2015;96(1):104–120. doi:10.1016/j.ajhg.2014.12.004
  • Budu-Aggrey A, Watkins SH, Brumpton B, et al. Assessment of a causal relationship between body mass index and atopic dermatitis. J Allergy Clin Immunol. 2021;147(1):400–403. doi:10.1016/j.jaci.2020.04.050
  • Brown SJ. What have we learned from GWAS for atopic dermatitis? J Invest Dermatol. 2021;141(1):19–22. doi:10.1016/j.jid.2020.05.100
  • Blakeway H, Van-de-velde V, Allen VB, et al. What is the evidence for interactions between filaggrin null mutations and environmental exposures in the aetiology of atopic dermatitis? A systematic review. Br J Dermatol. 2020;183(3):443–451. doi:10.1111/bjd.18778
  • Totte JE, van der Feltz WT, Hennekam M, van Belkum A, Van Zuuren EJ, Pasmans SG. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–695. doi:10.1111/bjd.14566
  • Tauber M, Balica S, Hsu CY, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137(4):1272–1274 e1273. doi:10.1016/j.jaci.2015.07.052
  • Blicharz L, Michalak M, Szymanek-Majchrzak K, et al. The propensity to form biofilm in vitro by Staphylococcus aureus strains isolated from the anterior nares of patients with atopic dermatitis: clinical associations. Dermatology. 2021;237(4):528–534. doi:10.1159/000511182
  • Blicharz L, Usarek P, Mlynarczyk G, Skowronski K, Rudnicka L, Samochocki Z. Is itch intensity in atopic dermatitis associated with skin colonization by Staphylococcus aureus? Indian J Dermatol. 2020;65(1):17–21. doi:10.4103/ijd.IJD_136_19
  • Allen HB, Vaze ND, Choi C, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–265. doi:10.1001/jamadermatol.2013.8627
  • Di Domenico EG, Cavallo I, Bordignon V, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. doi:10.1038/s41598-018-27421-1
  • Kim JE, Kim HS. Microbiome of the skin and gut in Atopic Dermatitis (AD): understanding the pathophysiology and finding novel management strategies. J Clin Med. 2019;8(4):120.
  • Abad ED, Ferreira DC, Cavalcante FS, et al. High incidence of acquiring methicillin-resistant Staphylococcus aureus in Brazilian children with Atopic Dermatitis and associated risk factors. J Microbiol Immunol Infect. 2020;53(5):724–730. doi:10.1016/j.jmii.2018.12.014
  • Chung HJ, Jeon HS, Sung H, Kim MN, Hong SJ. Epidemiological characteristics of methicillin-resistant Staphylococcus aureus isolates from children with eczematous atopic dermatitis lesions. J Clin Microbiol. 2008;46(3):991–995. doi:10.1128/JCM.00698-07
  • Jagadeesan S, Kurien G, Divakaran MV, Sadanandan SM, Sobhanakumari K, Sarin A. Methicillin-resistant Staphylococcus aureus colonization and disease severity in atopic dermatitis: a cross-sectional study from South India. Indian J Dermatol Venereol Leprol. 2014;80(3):229–234. doi:10.4103/0378-6323.132250
  • Lo WT, Wang SR, Tseng MH, Huang CF, Chen SJ, Wang CC. Comparative molecular analysis of meticillin-resistant Staphylococcus aureus isolates from children with atopic dermatitis and healthy subjects in Taiwan. Br J Dermatol. 2010;162(5):1110–1116. doi:10.1111/j.1365-2133.2010.09679.x
  • Leung DY, Hanifin JM, Pariser DM, et al. Effects of pimecrolimus cream 1% in the treatment of patients with atopic dermatitis who demonstrate a clinical insensitivity to topical corticosteroids: a randomized, multicentre vehicle-controlled trial. Br J Dermatol. 2009;161(2):435–443. doi:10.1111/j.1365-2133.2009.09145.x
  • Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Alefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the role of Staphylococcus aureus toxins in atopic dermatitis. Toxins. 2019;11(6):321. doi:10.3390/toxins11060321
  • van Drongelen V, Haisma EM, Out-Luiting JJ, Nibbering PH, El Ghalbzouri A. Reduced filaggrin expression is accompanied by increased Staphylococcus aureus colonization of epidermal skin models. Clin Exp Allergy. 2014;44(12):1515–1524. doi:10.1111/cea.12443
  • Schlievert PM, Strandberg KL, Lin YC, Peterson ML, Leung DY. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. J Allergy Clin Immunol. 2010;125(1):39–49. doi:10.1016/j.jaci.2009.10.039
  • Leung D. Superantigens, steroid insensitivity and innate immunity in atopic eczema. Acta Derm Venereol Suppl. 2005;(215):11–15. doi:10.1080/03658340510012435
  • Breuer K, Wittmann M, Kempe K, et al. Alpha-toxin is produced by skin colonizing Staphylococcus aureus and induces a T helper type 1 response in atopic dermatitis. Clin Exp Allergy. 2005;35(8):1088–1095. doi:10.1111/j.1365-2222.2005.02295.x
  • Ezepchuk YV, Leung DY, Middleton MH, Bina P, Reiser R, Norris DA. Staphylococcal toxins and protein A differentially induce cytotoxicity and release of tumor necrosis factor-alpha from human keratinocytes. J Invest Dermatol. 1996;107(4):603–609. doi:10.1111/1523-1747.ep12583377
  • Brauweiler AM, Goleva E, Leung DYM. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014;134(8):2114–2121. doi:10.1038/jid.2014.43
  • Brauweiler AM, Bin L, Kim BE, et al. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal alpha-toxin-induced keratinocyte death. J Allergy Clin Immunol. 2013;131(2):421–427 e421–422. doi:10.1016/j.jaci.2012.10.030
  • Baldry M, Nakamura Y, Nakagawa S, et al. Application of an agr-specific antivirulence compound as therapy for Staphylococcus aureus-induced inflammatory skin disease. J Infect Dis. 2018;218(6):1009–1013. doi:10.1093/infdis/jiy259
  • Azimi E, Reddy VB, Lerner EA. Brief communication: MRGPRX2, atopic dermatitis and red man syndrome. Itch. 2017;2(1):e5–e5. doi:10.1097/itx.0000000000000005
  • Cruz AR, Boer MAD, Strasser J, et al. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A. 2021;118(7). doi:10.1073/pnas.2016772118
  • Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–516. doi:10.1038/nature18634
  • Nakatsuji T, Gallo RL. The role of the skin microbiome in atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(3):263–269. doi:10.1016/j.anai.2018.12.003
  • Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211–2221. doi:10.1038/jid.2010.123
  • Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9). doi:10.1172/jci.insight.120608
  • Myles IA, Williams KW, Reckhow JD, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10). doi:10.1172/jci.insight.86955
  • Ramsey MM, Freire MO, Gabrilska RA, Rumbaugh KP, Lemon KP. Staphylococcus aureus shifts toward commensalism in response to corynebacterium species. Front Microbiol. 2016;7:1230. doi:10.3389/fmicb.2016.01230
  • Shu M, Wang Y, Yu J, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8(2):e55380. doi:10.1371/journal.pone.0055380
  • Parlet CP, Brown MM, Horswill AR. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 2019;27(6):497–507. doi:10.1016/j.tim.2019.01.008
  • Linehan JL, Harrison OJ, Han SJ, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(4):784–796 e718. doi:10.1016/j.cell.2017.12.033
  • Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–1382. doi:10.1038/nm.2062
  • Meijer K, de Vos P, Priebe M G. (2010). Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health?. Curr Opin Clin Nutr Metab Care, 13(6), 715–21. 10.1097/MCO.0b013e32833eebe5
  • Wang V, Keefer M, Ong PY. Antibiotic choice and methicillin-resistant Staphylococcus aureus rate in children hospitalized for atopic dermatitis. Ann Allergy Asthma Immunol. 2019;122(3):314–317. doi:10.1016/j.anai.2018.12.001
  • Wollenberg A, Zoch C, Wetzel S, Plewig G, Przybilla B. Predisposing factors and clinical features of eczema herpeticum: a retrospective analysis of 100 cases. J Am Acad Dermatol. 2003;49(2):198–205. doi:10.1067/S0190-9622(03)00896-X
  • Xiao A, Tsuchiya A. Eczema Herpeticum. Treasure Island (FL): StatPearls; 2022.
  • Beck LA, Boguniewicz M, Hata T, et al. Phenotype of atopic dermatitis subjects with a history of eczema herpeticum. J Allergy Clin Immunol. 2009;124(2):260–269, 269 e261–267. doi:10.1016/j.jaci.2009.05.020
  • Manti S, Amorini M, Cuppari C, et al. Filaggrin mutations and Molluscum contagiosum skin infection in patients with atopic dermatitis. Ann Allergy Asthma Immunol. 2017;119(5):446–451. doi:10.1016/j.anai.2017.07.019
  • Berger EM, Orlow SJ, Patel RR, Schaffer JV. Experience with molluscum contagiosum and associated inflammatory reactions in a pediatric dermatology practice: the bump that rashes. Arch Dermatol. 2012;148(11):1257–1264. doi:10.1001/archdermatol.2012.2414
  • Johnson VK, Hayman JL, McCarthy CA, Cardona ID. Successful treatment of eczema coxsackium with wet wrap therapy and low-dose topical corticosteroid. J Allergy Clin Immunol Pract. 2014;2(6):803–804. doi:10.1016/j.jaip.2014.07.018
  • Reed JL, Scott DE, Bray M. Eczema vaccinatum. Clin Infect Dis. 2012;54(6):832–840. doi:10.1093/cid/cir952
  • Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16(2):e0010141. doi:10.1371/journal.pntd.0010141
  • World Health Organization. Multi-country monkeypox outbreak in non-endemic countries: update; 2022. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388. Accessed June 4, 2022.
  • Howell M D, Gallo R L, Boguniewicz M, Jones J F, Wong C, Streib J E, Leung D Y. (2006). Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity, 24(3), 341–8. 10.1016/j.immuni.2006.02.006
  • Oyoshi MK, Elkhal A, Kumar L, et al. Vaccinia virus inoculation in sites of allergic skin inflammation elicits a vigorous cutaneous IL-17 response. Proc Natl Acad Sci U S A. 2009;106(35):14954–14959. doi:10.1073/pnas.0904021106
  • Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124(3):485–493, 493 e481. doi:10.1016/j.jaci.2009.05.042
  • Prevention CfDCa. Smallpox vaccines. Available from: https://www.cdc.gov/smallpox/clinicians/vaccines.html. Accessed June 4, 2022.
  • Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. The role of Malassezia spp. in atopic dermatitis. J Clin Med. 2015;4(6):1217–1228. doi:10.3390/jcm4061217
  • Kaga M, Sugita T, Nishikawa A, Wada Y, Hiruma M, Ikeda S. (2011). Molecular analysis of the cutaneous Malassezia microbiota from the skin of patients with atopic dermatitis of different severities. Mycoses, 54(4), e24–8. 10.1111/j.1439-0507.2009.01821.x
  • Sugita T, Suto H, Unno T, et al. Molecular analysis of Malassezia microflora on the skin of atopic dermatitis patients and health subjects. J Clin Microbiol. 2001;39(10):3486–3490. doi:10.1128/JCM.39.10.3486-3490.2001
  • Bjerre R D, Bandier J, Skov L, Engstrand L, Johansen J D. (2017). The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol, 177(5), 1272–1278. 10.1111/bjd.15390
  • Broberg A, Faergemann J. Topical antimycotic treatment of atopic dermatitis in the head/neck area. A double-blind randomised study. Acta Derm Venereol. 1995;75(1):46–49. doi:10.2340/00015555754649
  • Werfel T, Heratizadeh A, Niebuhr M, et al. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber. J Allergy Clin Immunol. 2015;136(1):96–103 e109. doi:10.1016/j.jaci.2015.04.015
  • Chong AC, Chwa WJ, Ong PY. Aeroallergens in atopic dermatitis and chronic urticaria. Curr Allergy Asthma Rep. 2022;22:67–75. doi:10.1007/s11882-022-01033-2
  • Kutlu A, Karabacak E, Aydin E, et al. Relationship between skin prick and atopic patch test reactivity to aeroallergens and disease severity in children with atopic dermatitis. Allergol Immunopathol. 2013;41(6):369–373. doi:10.1016/j.aller.2013.02.007
  • Serhan N, Basso L, Sibilano R, et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol. 2019;20(11):1435–1443. doi:10.1038/s41590-019-0493-z
  • Butuci M, Benet Z, Wong A, et al. Mast cells are locally activated and respond to MRGPRX2 stimulation in atopic dermatitis ex vivo skin biopsies. J Allergy Clin Immunol. 2022;149(2):AB5–AB5. doi:10.1016/j.jaci.2021.12.058
  • Lee Y, Lee E, Yon DK, et al. The potential pathways underlying the association of propyl-paraben exposure with aeroallergen sensitization and EASI score using metabolomics analysis. Sci Rep. 2021;11(1):3772. doi:10.1038/s41598-021-83288-9
  • Wassmann-Otto A, Heratizadeh A, Wichmann K, Werfel T. Birch pollen-related foods can cause late eczematous reactions in patients with atopic dermatitis. Allergy. 2018;73(10):2046–2054. doi:10.1111/all.13454
  • Anderson LB, Dreyfuss EM, Logan J, Johnstone DE, Glaser J. Melon and banana sensitivity coincident with ragweed pollinosis. J Allergy. 1970;45(5):310–319. doi:10.1016/0021-8707(70)90037-7
  • Wollenberg A, Christen-Zach S, Taieb A, et al. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. J Eur Acad Dermatol Venereol. 2020;34(12):2717–2744. doi:10.1111/jdv.16892
  • Werfel T, Breuer K, Rueff F, et al. Usefulness of specific immunotherapy in patients with atopic dermatitis and allergic sensitization to house dust mites: a multi-centre, randomized, dose-response study. Allergy. 2006;61(2):202–205. doi:10.1111/j.1398-9995.2006.00974.x
  • Pajno GB, Caminiti L, Vita D, et al. Sublingual immunotherapy in mite-sensitized children with atopic dermatitis: a randomized, double-blind, placebo-controlled study. J Allergy Clin Immunol. 2007;120(1):164–170. doi:10.1016/j.jaci.2007.04.008
  • Langer SS, Cardili RN, Melo JML, et al. Efficacy of house dust mite sublingual immunotherapy in patients with atopic dermatitis: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol Pract. 2022;10(2):539–549 e537. doi:10.1016/j.jaip.2021.10.060
  • Fadadu RP, Grimes B, Jewell NP, et al. Association of wildfire air pollution and health care use for atopic dermatitis and itch. JAMA Dermatol. 2021;157(6):658–666. doi:10.1001/jamadermatol.2021.0179
  • Park SK, Kim JS, Seo HM. Exposure to air pollution and incidence of atopic dermatitis in the general population: a national population-based retrospective cohort study. J Am Acad Dermatol. 2021. doi:10.1016/j.jaad.2021.05.061
  • Ye C, Gu H, Li M, Chen R, Xiao X, Zou Y. Air pollution and weather conditions are associated with daily outpatient visits of atopic dermatitis in Shanghai, China. Dermatology. 2022;1–11. doi:10.1159/000526143
  • Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: a systematic review and meta-analysis. J Am Acad Dermatol. 2016;75(6):1119–1125 e1111. doi:10.1016/j.jaad.2016.07.017
  • Edamitsu T, Taguchi K, Okuyama R, Yamamoto M. AHR and NRF2 in skin homeostasis and atopic dermatitis. Antioxidants. 2022;11(2):227. doi:10.3390/antiox11020227
  • Kim BE, Kim J, Goleva E, et al. Particulate matter causes skin barrier dysfunction. JCI Insight. 2021;6(5). doi:10.1172/jci.insight.145185
  • Woo YR, Park SY, Choi K, Hong ES, Kim S, Kim HS. Air pollution and atopic dermatitis (AD): the impact of particulate matter (PM10) on an AD mouse-model. Int J Mol Sci. 2020;21(17):6079. doi:10.3390/ijms21176079
  • Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol. 2013;133(7):1752–1759. doi:10.1038/jid.2013.19
  • Kantor R, Silverberg JI. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev Clin Immunol. 2017;13(1):15–26. doi:10.1080/1744666X.2016.1212660
  • Legat FJ. The antipruritic effect of phototherapy. Front Med. 2018;5:333. doi:10.3389/fmed.2018.00333
  • Bonnelykke K, Pipper CB, Tavendale R, Palmer CN, Bisgaard H. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth. Pediatr Allergy Immunol. 2010;21(6):954–961. doi:10.1111/j.1399-3038.2010.01073.x
  • Schuttelaar ML, Kerkhof M, Jonkman MF, et al. Filaggrin mutations in the onset of eczema, sensitization, asthma, hay fever and the interaction with cat exposure. Allergy. 2009;64(12):1758–1765. doi:10.1111/j.1398-9995.2009.02080.x
  • Cramer C, Link E, Horster M, et al. Elder siblings enhance the effect of filaggrin mutations on childhood eczema: results from the 2 birth cohort studies LISAplus and GINIplus. J Allergy Clin Immunol. 2010;125(6):1254–1260 e1255. doi:10.1016/j.jaci.2010.03.036
  • Brown SJ, Relton CL, Liao H, et al. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br J Dermatol. 2009;161(4):884–889. doi:10.1111/j.1365-2133.2009.09339.x
  • Henderson J, Northstone K, Lee SP, et al. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol. 2008;121(4):872–877 e879. doi:10.1016/j.jaci.2008.01.026
  • Irvine AD, McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol. 2006;126(6):1200–1202. doi:10.1038/sj.jid.5700365
  • Rustad AM, Nickles MA, Bilimoria SN, Lio PA. The role of diet modification in atopic dermatitis: navigating the complexity. Am J Clin Dermatol. 2022;23(1):27–36. doi:10.1007/s40257-021-00647-y
  • Oykhman P, Dookie J, Al-Rammahy H, et al. Dietary elimination for the treatment of atopic dermatitis: a systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2022;10(10):2657–2666 e2658. doi:10.1016/j.jaip.2022.06.044
  • Kim JH. Role of breast-feeding in the development of atopic dermatitis in early childhood. Allergy Asthma Immunol Res. 2017;9(4):285–287. doi:10.4168/aair.2017.9.4.285
  • Thibodeaux Q, Smith MP, Ly K, Beck K, Liao W, Bhutani T. A review of dupilumab in the treatment of atopic diseases. Hum Vaccin Immunother. 2019;15(9):2129–2139. doi:10.1080/21645515.2019.1582403
  • Charvet E, Bourrat E, Hickman G, et al. Efficacy of dupilumab for controlling severe atopic dermatitis with dominant-negative CARD11 variant. Clin Exp Dermatol. 2021;46(7):1334–1335. doi:10.1111/ced.14686
  • Ollech A, Mashiah J, Lev A, et al. Treatment options for DOCK8 deficiency-related severe dermatitis. J Dermatol. 2021;48(9):1386–1393. doi:10.1111/1346-8138.15955
  • Joshi TP, Anvari S, Gupta MR, Davis CM, Hajjar J. Case report: dupilumab successfully controls severe eczema in a child with elevated IgE levels and recurrent skin infections. Front Pediatr. 2021;9:646997. doi:10.3389/fped.2021.646997
  • Droghini HR, Abonia JP, Collins MH, et al. Targeted IL-4Ralpha blockade ameliorates refractory allergic eosinophilic inflammation in a patient with dysregulated TGF-beta signaling due to ERBIN deficiency. J Allergy Clin Immunol Pract. 2022;10(7):1903–1906. doi:10.1016/j.jaip.2022.01.012
  • Steuer AB, Cohen DE. Treatment of Netherton syndrome with dupilumab. JAMA Dermatol. 2020;156(3):350–351. doi:10.1001/jamadermatol.2019.4608
  • Lu CW, Lee WI, Chung WH. Dupilumab for STAT3-hyper-IgE syndrome with refractory intestinal complication. Pediatrics. 2021;148(3). doi:10.1542/peds.2021-050351
  • Matucci-Cerinic C, Viglizzo G, Pastorino C, et al. Remission of eczema and recovery of Th1 polarization following treatment with Dupilumab in STAT3 hyper IgE syndrome. Pediatr Allergy Immunol. 2022;33(4):e13770. doi:10.1111/pai.13770
  • Sogkas G, Hirsch S, Jablonka A, Witte T, Schmidt RE, Atschekzei F. Dupilumab to treat severe atopic dermatitis in autosomal dominant hyper-IgE syndrome. Clin Immunol. 2020;215:108452. doi:10.1016/j.clim.2020.108452
  • Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol. 2021;148(4):927–940. doi:10.1016/j.jaci.2021.08.009
  • Radi G, Simonetti O, Rizzetto G, Diotallevi F, Molinelli E, Offidani A. Baricitinib: the first jak inhibitor approved in Europe for the treatment of moderate to severe atopic dermatitis in adult patients. Healthcare. 2021;9(11):1575. doi:10.3390/healthcare9111575
  • Guttman-Yassky E, Blauvelt A, Eichenfield LF, et al. Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatol. 2020;156(4):411–420. doi:10.1001/jamadermatol.2020.0079
  • Zainal NHM, Abas R, Mohamad Asri SF. Childhood allergy disease, early diagnosis, and the potential of salivary protein biomarkers. Mediators Inflamm. 2021;2021:9198249. doi:10.1155/2021/9198249
  • Ratchataswan T, Banzon TM, Thyssen JP, Weidinger S, Guttman-Yassky E, Phipatanakul W. Biologics for treatment of atopic dermatitis: current status and future prospect. J Allergy Clin Immunol Pract. 2021;9(3):1053–1065. doi:10.1016/j.jaip.2020.11.034
  • Bissonnette R, Stein Gold L, Rubenstein DS, Tallman AM, Armstrong A. Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor-modulating agent. J Am Acad Dermatol. 2021;84(4):1059–1067. doi:10.1016/j.jaad.2020.10.085
  • Denison MS, Faber SC. And now for something completely different: diversity in ligand-dependent activation of ah receptor responses. Curr Opin Toxicol. 2017;2:124–131. doi:10.1016/j.cotox.2017.01.006
  • Clowry J, Irvine AD, McLoughlin RM. Next-generation anti-Staphylococcus aureus vaccines: a potential new therapeutic option for atopic dermatitis? J Allergy Clin Immunol. 2019;143(1):78–81. doi:10.1016/j.jaci.2018.08.038
  • Darlenski R, Kozyrskyj AL, Fluhr JW, Caraballo L. Association between barrier impairment and skin microbiota in atopic dermatitis from a global perspective: unmet needs and open questions. J Allergy Clin Immunol. 2021;148(6):1387–1393. doi:10.1016/j.jaci.2021.10.002