328
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Embelin Alleviates Severe Airway Inflammation in OVA-LPS-Induced Rat Model of Allergic Asthma

, ORCID Icon, , ORCID Icon, , ORCID Icon, , , , & show all
Pages 1511-1525 | Published online: 15 Dec 2021

References

  • Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Vol. 2020; 2016.
  • Liu S, Zhi Y, Ying S. COVID-19 and asthma: reflection during the pandemic. Clin Rev Allergy Immunol. 2020;59:78–88. doi:10.1007/s12016-020-08797-3
  • Kaufman G. Asthma: pathophysiology, diagnosis and management. Nurs Stand. 2011;26(5):48. doi:10.7748/ns.26.5.48.s55
  • Pedersen SE, Hurd SS, Lemanske RF Jr, et al. Global strategy for the diagnosis and management of asthma in children 5 years and younger. Pediatr Pulmonol. 2011;46(1):1–17. doi:10.1002/ppul.21321
  • Mohammed S, Goodacre S. Intravenous and nebulised magnesium sulphate for acute asthma: systematic review and meta-analysis. Emerg Med J. 2007;24(12):823–830. doi:10.1136/emj.2007.052050
  • Adams BK, Cydulka RK. Asthma evaluation and management. Emerg Med Clin N Am. 2003;21(2):315–330. doi:10.1016/S0733-8627(03)00015-4
  • Schaneberg BT, Crockett S, Bedir E, et al. The role of chemical fingerprinting: application to Ephedra. Phytochemistry. 2003;62(6):911–918. doi:10.1016/S0031-9422(02)00716-1
  • Barnes PJ. Drugs for asthma. Br J Pharmacol. 2006;147(S1):S297–S303. doi:10.1038/sj.bjp.0706437
  • Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther. 2006;109(3):366–398. doi:10.1016/j.pharmthera.2005.07.003
  • DiMartino SJ. Idiopathic inflammatory myopathy: treatment options. Curr Rheumatol Rep. 2008;10(4):321. doi:10.1007/s11926-008-0051-4
  • Kesler SM, Sprenkle MD, David WS, et al. Severe weakness complicating status asthmaticus despite minimal duration of neuromuscular paralysis. Intensive Care Med. 2009;35(1):157–160. doi:10.1007/s00134-008-1267-5
  • Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, et al. Use of natural products in asthma treatment. Evid. Based Complementary Altern. Med. 2020;2020:1–35. doi:10.1155/2020/1021258
  • Othman SNN, Lum PT, Sekar M, et al. Molecules of interest–embelin–a review. Res J Pharm Technol. 2020;13(7):3485–3493. doi:10.5958/0974-360X.2020.00618.6
  • Thippeswamy BS, Mahendran S, Biradar MI, et al. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharmacol. 2011;654(1):100–105. doi:10.1016/j.ejphar.2010.12.012
  • Shirole R, Shirole NL, Saraf MN. Embelia ribes ameliorates lipopolysaccharide-induced acute respiratory distress syndrome. J Ethnopharmacol. 2015;168:356–363. doi:10.1016/j.jep.2015.03.009
  • Lee I-S, Cho D-H, Kim K-S, et al. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues. Immunopharmacol Immunotoxicol. 2018;40(1):83–90. doi:10.1080/08923973.2017.1414836
  • Dai J, Ren M, Jiang M, et al. Embelin mitigates airway inflammation in ovalbumin induced asthma in a murine model. Lat Am J Pharm. 2018;37(10):1969–1976.
  • Thakur VR, Khuman V, Beladiya JV, et al. An experimental model of asthma in rats using ovalbumin and lipopolysaccharide allergens. Heliyon. 2019;5(11):e02864. doi:10.1016/j.heliyon.2019.e02864
  • Zhao S, Jiang Y, Yang X, et al. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. J Asthma. 2017;54(5):447–455. doi:10.1080/02770903.2016.1223687
  • Lowe A, Thomas RS, Nials A, et al. LPS exacerbates functional and inflammatory responses to ovalbumin and decreases sensitivity to inhaled fluticasone propionate in a Guinea pig model of asthma. Br J Pharmacol. 2015;172(10):2588–2603. doi:10.1111/bph.13080
  • Yu QL, Chen Z. Establishment of different experimental asthma models in mice. Exp Ther Med. 2018;15(3):2492–2498. doi:10.3892/etm.2018.5721
  • Kumar RK, Herbert C, Foster P. The “Classical” ovalbumin challenge model of asthma in mice. Curr. Drug Targets. 2008;9(6):485–494. doi:10.2174/138945008784533561
  • Khodoun MV, Orekhova T, Potter C, et al. Basophils initiate IL-4 production during a memory T-dependent response. J Exp Med. 2004;200(7):857–870. doi:10.1084/jem.20040598
  • Liu L, Rich BE, Inobe J-I, et al. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol. 1998;10(8):1017–1026. doi:10.1093/intimm/10.8.1017
  • Finkelman FD, Urban JF Jr, Beckmann MP, et al. Regulation of murine in vivo IgG and IgE responses by a monoclonal anti-IL-4 receptor antibody. Int Immunol. 1991;3(6):599–607. doi:10.1093/intimm/3.6.599
  • Grunewald SM, Werthmann A, Schnarr B, et al. An antagonistic IL-4 mutant prevents type I allergy in the mouse: inhibition of the IL-4/IL-13 receptor system completely abrogates humoral immune response to allergen and development of allergic symptoms in vivo. J Immunol. 1998;160(8):4004–4009.
  • Hogan MB, Piktel D, Landreth KS. IL-5 production by bone marrow stromal cells: implications for eosinophilia associated with asthma. J Allergy Clin Immunol. 2000;106(2):329–336. doi:10.1067/mai.2000.108309
  • Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. The Lancet. 2012;380(9842):651–659. doi:10.1016/S0140-6736(12)60988-X
  • Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75(1):68–78. doi:10.1016/j.cyto.2015.05.014
  • Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21(1):425–456. doi:10.1146/annurev.immunol.21.120601.141142
  • Elias JA, Lee CG, Zheng T, et al. Interleukin-13 and leukotrienes: an intersection of pathogenetic schema. Am J Respir Cell Mol Biol. 2003;28(4):401–404. doi:10.1165/rcmb.F264
  • Wills‐Karp M. Interleukin‐13 in asthma pathogenesis. Immunol Rev. 2004;202(1):175–190. doi:10.1111/j.0105-2896.2004.00215.x
  • SreeHarsha N. Embelin impact on paraquat‐induced lung injury through suppressing oxidative stress, inflammatory cascade, and MAPK/NF‐κB signaling pathway. J Biochem Mol Toxicol. 2020;34(4):e22456. doi:10.1002/jbt.22456
  • Caruso F, Rossi M, Pedersen JZ, et al. Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone. J Infect Public Health. 2020;13(12):1868–1877. doi:10.1016/j.jiph.2020.09.015
  • Mahendran S, Badami S, Ravi S, et al. Synthesis and evaluation of analgesic and anti-inflammatory activities of most active antioxidant derivatives of embelin. J Pharm Res Int. 2014;58:2182–2199.
  • Garg K, Bahl I, Kaul M. A Textbook of Histology: A Colour Atlas and Text. CBS Publishers & Distributors; 1999.
  • Kittel B, Ruehl-Fehlert C, Morawietz G, et al. Revised guides for organ sampling and trimming in rats and mice–Part 2: a joint publication of the RITA) and NACAD) groups. Exp Toxicol Pathol. 2004;55(6):413–431. doi:10.1078/0940-2993-00349
  • Mahendran S, Badami S, Maithili V. Evaluation of antidiabetic effect of embelin from Embelia ribes in alloxan induced diabetes in rats. Biomed Prev Nutr. 2011;1(1):25–31. doi:10.1016/j.bionut.2010.08.002
  • Rathinam K, Santhakumari G, Ramiah N. Studies on the antifertility activity of embelin. J Res Ind Med. 1976;11:84–90.
  • Indian Herbal Pharmacopoeia. A Joint Publication of Regional Research Laboratories (CSIR) Jammu Tawi and Indian Drugs Manufacturer’s Association. Mumbai: Indian Drug Manufacturers Association; 2002:206–213.
  • MoHFW. The Ayurvedic Pharmacopoeia of India. Part-I. New Delhi: Ministry of Health and Family Welfare, Department of AYUSH, Government of India; 1989:123–124.
  • Poojari R, Gupta S, Maru G, et al. Chemopreventive and hepatoprotective effects of embelin on N-nitrosodiethylamine and carbon tetrachloride induced preneoplasia and toxicity in rat liver. Asian Pac. J. Cancer Prev. 2010;11(4):1015–1020.
  • Mahajan SG, Mehta AA. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a Guinea pig model of asthma. Eur J Pharmacol. 2011;650(1):458–464. doi:10.1016/j.ejphar.2010.09.075
  • Hershey GKK, Friedrich MF, Esswein LA, et al. The association of atopy with a gain-of-function mutation in the α subunit of the interleukin-4 receptor. N Engl J Med. 1997;337(24):1720–1725. doi:10.1056/NEJM199712113372403
  • Kim E, Kwon J-T, Lee D-H, et al. Ethylene glycol potentiated didecyldimethylammonium chloride toxicity in human bronchial epithelial cells. Mol Cell Toxicol. 2015;11(2):161–166. doi:10.1007/s13273-015-0014-6
  • Kim YH, Park C-S, Lim DH, et al. Antiallergic effect of anti–Siglec-F through reduction of eosinophilic inflammation in murine allergic rhinitis. Am J Rhinol Allergy. 2013;27(3):187–191. doi:10.2500/ajra.2013.27.3866
  • Te Velde AA, Huijbens R, Heije K, et al. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes. Blood;1990. 1392–1397. doi:10.1182/blood.V76.7.1392.1392
  • Levings MK, Schrader JW. IL-4 inhibits the production of TNF-α and IL-12 by STAT6-dependent and-independent mechanisms. J Immunol. 1999;162(9):5224–5229.
  • de Vries JE. The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol. 1998;102(2):165–169. doi:10.1016/S0091-6749(98)70080-6
  • Bonam SR, Kaveri SV, Sakuntabhai A, et al. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep Med. 2020;1:100016. doi:10.1016/j.xcrm.2020.100016
  • Zaidan MF, Ameredes BT, Calhoun WJ. Management of acute asthma in adults in 2020. JAMA. 2020;323(6):563–564. doi:10.1001/jama.2019.19987
  • Garg S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States, March 1 –30, 2020. Morbidity Mortality Weekly Rep. 2020;69:458.