786
Views
1
CrossRef citations to date
0
Altmetric
Review

Nutraceutical Aid for Allergies – Strategies for Down-Regulating Mast Cell Degranulation

, ORCID Icon, &
Pages 1257-1266 | Published online: 27 Oct 2021

References

  • Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi-Eisenberg R, Nilsson G. The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy Eur J Allergy Clin Immunol. 2021. doi:10.1111/all.14881
  • Varricchi G, Marone G. Mast cells: fascinating but still elusive after 140 years from their discovery. Int J Mol Sci. 2020;21(464):464. doi:10.3390/ijms21020464
  • Giannetti A, Filice E, Caffarelli C, Ricci G, Pession A. Mast cell activation disorders. Med. 2021;57:124. doi:10.3390/medicina57020124
  • Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med. 2015;373(2):163–172. doi:10.1056/NEJMRA1409760
  • Dvorak A. Piecemeal degranulation of basophils and mast cells is effected by vesicular transport of stored secretory granule contents. Chem Immunol Allergy. 2005;85:135–184. doi:10.1159/000086516
  • Metcalfe D, Peavy R, Gilfillan A. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639–646. doi:10.1016/J.JACI.2009.08.035
  • Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol. 2021;72:51–58. doi:10.1016/J.COI.2021.03.015
  • Inoue T, Suzuki Y, Yoshimaru T, Ra C. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: role of NADPH oxidase and mitochondria. Biochim Biophys Acta Mol Cell Res. 2008;1783(5):789–802. doi:10.1016/J.BBAMCR.2007.12.004
  • Costello PS, Turner M, Walters AE, et al. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene. 1996;13(12):2595–2605.
  • Shao Y, Zhang S, Zhang Y, Liu Z. Recent advance of spleen tyrosine kinase in diseases and drugs. Int Immunopharmacol. 2021;90:107168. doi:10.1016/J.INTIMP.2020.107168
  • Nakata K, Yoshimaru T, Suzuki Y, et al. Positive and negative regulation of high affinity ige receptor signaling by src homology region 2 domain-containing phosphatase 1. J Immunol. 2008;181(8):5414–5424. doi:10.4049/JIMMUNOL.181.8.5414
  • Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev. 2009;228(1):149–169. doi:10.1111/J.1600-065X.2008.00742.X
  • Mahajan A, Barua D, Cutler P, et al. Optimal aggregation of FcεRI with a structurally defined trivalent ligand overrides negative regulation driven by phosphatases. ACS Chem Biol. 2014;9(7):1508–1519. doi:10.1021/CB500134T
  • Deng Y, Jin F, Li X, et al. Sauchinone suppresses FcεRI-mediated mast cell signaling and anaphylaxis through regulation of LKB1/AMPK axis and SHP-1-Syk signaling module. Int Immunopharmacol. 2019;74:105702. doi:10.1016/J.INTIMP.2019.105702
  • Cunnick JM, Dorsey JF, Mei L, Wu J. Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. IUBMB Life. 1998;45(5):887–894. doi:10.1002/IUB.7510450506
  • Weibrecht I, Böhmer SA, Dagnell M, Kappert K, Östman A, Böhmer FD. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med. 2007;43(1):100–110. doi:10.1016/J.FREERADBIOMED.2007.03.021
  • Chen C-Y, Willard D, Rudolph J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry. 2009;48(6):1399–1409. doi:10.1021/BI801973Z
  • Heneberg P, Dráberová L, Bambousková M, Pompach P, Dráber P. Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem. 2010;285(17):12787–12802. doi:10.1074/JBC.M109.052555
  • Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid Redox Signal. 2011;15(1):77–97. doi:10.1089/ARS.2010.3611
  • Lo Conte M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem. 2013;288(37):26480–26488. doi:10.1074/JBC.R113.467738
  • Li ZY, Jiang WY, Cui ZJ. An essential role of NAD(P)H oxidase 2 in UVA-induced calcium oscillations in mast cells. Photochem Photobiol Sci. 2015;14(2):414–428. doi:10.1039/C4PP00304G
  • Min A, Lee YA, Kim KA, Shin MH. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, exocytotic degranulation and IL-8 release of human mast cell induced by Trichomonas vaginalis-secreted LTB4. Microbes Infect. 2018;20(6):376–384. doi:10.1016/J.MICINF.2018.05.005
  • Kuehn HS, Rådinger M, Brown JM, et al. Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci. 2010;123(15):2576–2585. doi:10.1242/JCS.071043
  • Rastogi R, Geng X, Li F, Ding Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 2017;301. doi:10.3389/FNCEL.2016.00301
  • Takamiya R, Murakami M, Kajimura M, et al. Stabilization of mast cells by heme oxygenase-1: an anti-inflammatory role. Am J Physiol Hear Circ Physiol. 2002;283(3):H861–H870. doi:10.1152/AJPHEART.00740.2001
  • Yasui Y, Nakamura M, Onda T, et al. Heme oxygenase-1 inhibits cytokine production by activated mast cells. Biochem Biophys Res Commun. 2007;354(2):485–490. doi:10.1016/J.BBRC.2006.12.228
  • Matsushima M, Takagi K, Ogawa M, et al. Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm Res. 2009;58(10):705–715. doi:10.1007/S00011-009-0039-1
  • Ma Y, Yang M, Wang C, Ding J, Li J. Inhibiting mast cell degranulation by HO-1 affects dendritic cell maturation in vitro. Inflamm Res. 2014;63(7):527–537. doi:10.1007/S00011-014-0722-8
  • Lanone S, Bloc S, Foresti R, et al. Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB J. 2005;19(13):1890–1892. doi:10.1096/FJ.04-2368FJE
  • Matsumoto H, Ishikawa K, Itabe H, Maruyama Y. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction. Mol Cell Biochem. 2006;291(1):21–28. doi:10.1007/S11010-006-9190-Y
  • Jiang F, Roberts SJ, Datla S, Dusting GJ. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension. 2006;48(5):950–957. doi:10.1161/01.HYP.0000242336.58387.1F
  • Datla SR, Dusting GJ, Mori TA, Taylor CJ, Croft KD, Jiang F. Induction of heme oxygenase-1 in vivo suppresses NADPH oxidase–derived oxidative stress. Hypertension. 2007;50(4):636–642. doi:10.1161/HYPERTENSIONAHA.107.092296
  • Hwang SL, Li X, Lu Y, et al. AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice. J Allergy Clin Immunol. 2013;132(3):729–736.e12. doi:10.1016/J.JACI.2013.02.018
  • Hwang SL, Lu Y, Li X, et al. ERK1/2 antagonize AMPK-dependent regulation of FcεRI-mediated mast cell activation and anaphylaxis. J Allergy Clin Immunol. 2014;134(3):714–721.e7. doi:10.1016/J.JACI.2014.05.001
  • Li X, Park SJ, Jin F, et al. Tanshinone IIA suppresses FcεRI-mediated mast cell signaling and anaphylaxis by activation of the Sirt1/LKB1/AMPK pathway. Biochem Pharmacol. 2018;152:362–372. doi:10.1016/J.BCP.2018.04.015
  • Wang C, Li L, Jiang J, et al. Pterostilbene inhibits FcεRI signaling through activation of the LKB1/AMPK pathway in allergic response. J Agric Food Chem. 2020;68(11):3456–3465. doi:10.1021/ACS.JAFC.9B07126
  • Masini E, Mannaioni PF, Pistelli A, Salvemini D, Vane J. Impairment of the L-arginine-nitric oxide pathway in mast cells from spontaneously hypertensive rats. Biochem Biophys Res Commun. 1991;177(3):1178–1182. doi:10.1016/0006-291X(91)90664-S
  • Yip KH, Huang Y, Leung FP, Lau HYA. Cyclic guanosine monophosphate dependent pathway contributes to human mast cell inhibitory actions of the nitric oxide donor, diethylamine NONOate. Eur J Pharmacol. 2010;632(1–3):86–92. doi:10.1016/J.EJPHAR.2010.01.007
  • El-Awady MS, Eman S. Vardenafil ameliorates immunologic- and non-immunologic-induced allergic reactions. Can J Physiol Pharmacol. 2014;92(3):175–180. doi:10.1139/CJPP-2013-0316
  • Liu Y-H, Lu M, Xie Z-Z. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid Redox Signal. 2014;20(5):759–769. doi:10.1089/ARS.2012.4888
  • Roviezzo F, Bertolino A, Sorrentino R, et al. Hydrogen sulfide inhalation ameliorates allergen induced airway hyperreactivity by modulating mast cell activation. Pharmacol Res. 2015;100:85–92. doi:10.1016/J.PHRS.2015.07.032
  • Marino A, Martelli A, Citi V, et al. The novel H2S donor 4-carboxy-phenyl isothiocyanate inhibits mast cell degranulation and renin release by decreasing intracellular calcium. Br J Pharmacol. 2016;173(22):3222–3234. doi:10.1111/BPH.13583
  • Rodrigues L, Ekundi-Valentim E, Florenzano J, et al. Protective effects of exogenous and endogenous hydrogen sulfide in mast cell-mediated pruritus and cutaneous acute inflammation in mice. Pharmacol Res. 2017;115:255–266. doi:10.1016/J.PHRS.2016.11.006
  • Lin K-C, Huang D-Y, Huang D-W, Tzeng S-J, Lin -W-W. Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response. J Mol Med. 2015;94(2):183–194. doi:10.1007/S00109-015-1339-2
  • Rangaswami H, Schwappacher R, Marathe N, et al. Cyclic GMP and protein kinase G control a Src-containing mechanosome in osteoblasts. Sci Signal. 2010;3(153):ra91–ra91. doi:10.1126/SCISIGNAL.2001423
  • Brüne B, Schmidt K-U, Ullrich V. Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. Eur J Biochem. 1990;192(3):683–688. doi:10.1111/J.1432-1033.1990.TB19276.X
  • Siow RCM, Sato H, Mann GE. Heme oxygenase–carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc Res. 1999;41(2):385–394. doi:10.1016/S0008-6363(98)00278-8
  • Lee HJ, Mariappan MM, Feliers D, et al. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem. 2012;287(7):4451–4461. doi:10.1074/JBC.M111.278325
  • Chen X, Zhao X, Lan F, et al. Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-13251-0
  • Chen X, Zhao X, Cai H, et al. The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways. Redox Biol. 2017;12:987–1003. doi:10.1016/J.REDOX.2017.04.031
  • Zhou X, Cao Y, Ao G, et al. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal. 2014;21(12):1741–1758. doi:10.1089/ARS.2013.5587
  • Hourihan JM, Kenna JG, Hayes JD. The gasotransmitter hydrogen sulfide induces Nrf2-target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between Cys-226 and Cys-613. Antioxid Redox Signal. 2013;19(5):465–481. doi:10.1089/ARS.2012.4944
  • Yang G, Zhao K, Ju Y, et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal. 2013;18(15):1906–1919. doi:10.1089/ARS.2012.4645
  • Yang H, Mao Y, Tan B, Luo S, Zhu Y. The protective effects of endogenous hydrogen sulfide modulator, S-propargyl-cysteine, on high glucose-induced apoptosis in cardiomyocytes: a novel mechanism mediated by the activation of Nrf2. Eur J Pharmacol. 2015;761:135–143. doi:10.1016/J.EJPHAR.2015.05.001
  • Xie L, Gu Y, Wen M, et al. Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 2016;65(10):3171–3184. doi:10.2337/DB16-0020
  • Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol. 2017;312(1):C3–C15. doi:10.1152/AJPCELL.00282.2016
  • Nalli AD, Bhattacharya S, Wang H, Kendig DM, Grider JR, Murthy KS. Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am J Physiol Gastrointest Liver Physiol. 2017;313(4):G330–G341. doi:10.1152/AJPGI.00161.2017
  • Zhou Z, Martin E, Sharina I, et al. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res. 2016;111:556–562. doi:10.1016/J.PHRS.2016.06.029
  • Liang Y, Xu X, Yin M, et al. Effects of berberine on blood glucose in patients with type 2 diabetes mellitus: a systematic literature review and a meta-analysis. Endocr J. 2019;66(1):51–63. doi:10.1507/ENDOCRJ.EJ18-0109
  • Ju J, Li J, Lin Q, Xu H. Efficacy and safety of berberine for dyslipidaemias: a systematic review and meta-analysis of randomized clinical trials. Phytomedicine. 2018;50:25–34. doi:10.1016/J.PHYMED.2018.09.212
  • Ye Y, Liu X, Wu N, et al. Efficacy and safety of berberine alone for several metabolic disorders: a systematic review and meta-analysis of randomized clinical trials. Front Pharmacol. 2021;12. doi:10.3389/FPHAR.2021.653887
  • Lee YS, Kim WS, Kim KH, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes. 2006;55(8):2256–2264. doi:10.2337/DB06-0006
  • Turner N, Li J-Y, Gosby A, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I. Diabetes. 2008;57(5):1414–1418. doi:10.2337/DB07-1552
  • Song Y, Qu C, Srivastava K, et al. Food allergy herbal formula 2 protection against peanut anaphylactic reaction is via inhibition of mast cells and basophils. J Allergy Clin Immunol. 2010;126(6):1208–1217.e3. doi:10.1016/J.JACI.2010.09.013
  • Fu S, Ni S, Wang D, Fu M, Hong T. Berberine suppresses mast cell-mediated allergic responses via regulating FcɛRI-mediated and MAPK signaling. Int Immunopharmacol. 2019;71:1–6. doi:10.1016/J.INTIMP.2019.02.041
  • Kim BY, Park HR, Jeong HG, Kim SW. Berberine reduce allergic inflammation in a house dust mite allergic rhinitis mouse model. Rhinol J. 2015;53(4):353–358. doi:10.4193/RHIN15.028
  • Sakat MS, Kilic K, Kandemir FM, et al. The ameliorative effect of berberine and coenzyme Q10 in an ovalbumin-induced allergic rhinitis model. Eur Arch Otorhinolaryngol. 2018;275(10):2495–2505. doi:10.1007/S00405-018-5104-3
  • Koriyama Y, Nakayama Y, Matsugo S, Kato S. Protective effect of lipoic acid against oxidative stress is mediated by Keap1/Nrf2-dependent heme oxygenase-1 induction in the RGC-5 cellline. Brain Res. 2013;1499:145–157. doi:10.1016/J.BRAINRES.2012.12.041
  • Kyung S, Lim Joo W, Kim H. α-Lipoic acid inhibits IL-8 expression by activating Nrf2 signaling in helicobacter pylori-infected gastric epithelial cells. Nutrients. 2019;11(10):2524. doi:10.3390/NU11102524
  • Jeffrey S, Samraj P, Raj B. The role of alpha-lipoic acid supplementation in the prevention of diabetes complications: a comprehensive review of clinical trials. Curr Diabetes Rev. 2021;17. doi:10.2174/1573399817666210118145550
  • Kensler TW, Egner PA, Agyeman AS, et al. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem. 2013;329:163–177. doi:10.1007/128_2012_339
  • Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol. 2009;130(3):244–251. doi:10.1016/J.CLIM.2008.10.007
  • Choi YH, Chai OH, Han E-H, Choi S-Y, Kim HT, Song CH. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction. Anat Cell Biol. 2010;43(4):317. doi:10.5115/ACB.2010.43.4.317
  • Ma X, He P, Sun P, Han P. Lipoic acid: an immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J Agric Food Chem. 2010;58(8):5086–5092. doi:10.1021/JF904403U
  • Van Nguyen T, Piao CH, Fan YJ, et al. Anti-allergic rhinitis activity of α-lipoic acid via balancing Th17/Treg expression and enhancing Nrf2/HO-1 pathway signaling. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-69234-1
  • Yusin J, Wang V, Henning SM, et al. The effect of broccoli sprout extract on seasonal grass pollen-induced allergic rhinitis. Nutrients. 2021;13(4):1337. doi:10.3390/NU13041337
  • David H, Zhaoping L, Maria G-L, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2013;5(1):35–41. doi:10.1039/C3FO60277J
  • Fang J, Yan Y, Teng X, et al. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging (Albany NY). 2018;10(10):2954. doi:10.18632/AGING.101602
  • Hardeland R. Melatonin and inflammation—story of a double-edged blade. J Pineal Res. 2018;65(4):e12525. doi:10.1111/JPI.12525
  • Merlo S, Luaces JP, Spampinato SF, et al. SIRT1 mediates melatonin’s effects on microglial activation in hypoxia: in vitro and in vivo evidence. Biomolecules. 2020;10(3):364. doi:10.3390/BIOM10030364
  • Cakir Cetin A, Ecevit MC, Gumustekin M, et al. Therapeutic effects of melatonin on an ovalbumin-induced allergic rhinitis model in rats. Auris Nasus Larynx. 2021;48(6):1109–1119. doi:10.1016/J.ANL.2021.04.010
  • Çikler E, Ercan F, Çetinel Ş, Contuk G, Şener G. The protective effects of melatonin against water avoidance stress-induced mast cell degranulation in dermis. Acta Histochem. 2005;106(6):467–475. doi:10.1016/J.ACTHIS.2004.10.001
  • Maldonado MD, García-Moreno H, González-Yanes C, Calvo JR. Possible involvement of the inhibition of NF-κB factor in anti-inflammatory actions that melatonin exerts on mast cells. J Cell Biochem. 2016;117(8):1926–1933. doi:10.1002/JCB.25491
  • Wang J, Zhang Y, Hu S, Ge S, Jia M, Wang N. Resveratrol inhibits MRGPRX2-mediated mast cell activation via Nrf2 pathway. Int Immunopharmacol. 2021;93:107426. doi:10.1016/J.INTIMP.2021.107426
  • Zhang Y, Hu S, Ge S, Wang J, He L. Paeoniflorin inhibits IgE-mediated allergic reactions by suppressing the degranulation of mast cells though binding with FcϵRI alpha subunits. Eur J Pharmacol. 2020;886:173415. doi:10.1016/J.EJPHAR.2020.173415
  • Wang G, Cheng N. Paeoniflorin inhibits mast cell–mediated allergic inflammation in allergic rhinitis. J Cell Biochem. 2018;119(10):8636–8642. doi:10.1002/JCB.27135
  • Wang J, Zhang Y, Wang J, et al. Paeoniflorin inhibits MRGPRX2-mediated pseudo-allergic reaction via calcium signaling pathway. Phyther Res. 2020;34(2):401–408. doi:10.1002/PTR.6531
  • Zhao Y, Li X, Chu J, et al. Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation: in vitro and vivo. Food Funct. 2021;12(16):7448–7468. doi:10.1039/D1FO01421H
  • Terry MJ, Maines MD, Lagarias JC. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem. 1993;268(35):26099–26106. doi:10.1016/S0021-9258(19)74286-0
  • McCarty MF. Clinical potential of spirulina as a source of phycocyanobilin. J Med Food. 2007;10(4):566–570. doi:10.1089/JMF.2007.621
  • Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R110–R120. doi:10.1152/AJPREGU.00648.2011
  • Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of spirulina platensis derived C-phycocyanin. Evid Based Complement Altern Med. 2016;2016. doi:10.1155/2016/7803846
  • Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: an overview. Arch Toxicol. 2016;90(8):1817–1840. doi:10.1007/S00204-016-1744-5
  • Yang H-N, Lee E-H, Kim H-M. Spirulina platensis inhibits anaphylactic reaction. Life Sci. 1997;61(13):1237–1244. doi:10.1016/S0024-3205(97)00668-1
  • Kim HM, Lee EH, Cho HH, Moon YH. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina. Biochem Pharmacol. 1998;55(7):1071–1076. doi:10.1016/S0006-2952(97)00678-3
  • Remirez D, Ledón N, González R. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response. Mediators Inflamm. 2002;11(2):81–85. doi:10.1080/09629350220131926
  • Chen LL, Zhang SF, Huang DN, Tan JQ, He SH. Experimental study of spirulina platensis in treating allergic rhinitis in rats. J Cent South Univ). 2005;30(1):96–98.
  • Cingi C, Conk-Dalay M, Cakli H, Bal C. The effects of spirulina on allergic rhinitis. Eur Arch Otorhinolaryngol. 2008;265(10):1219–1223. doi:10.1007/S00405-008-0642-8
  • Nourollahian M, Rasoulian B, Gafari A, Anoushiravani M, Jabari F, Bakhshaee M. Clinical comparison of the efficacy of spirulina platensis and cetirizine for treatment of allergic rhinitis. Acta Otorhinolaryngol Ital. 2020;40(3):224–229. doi:10.14639/0392-100X-N0139
  • Mao TK, Van De Water J, Gershwin ME. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food. 2005;8(1):27–30. doi:10.1089/JMF.2005.8.27
  • Vesely D. Biotin enhances guanylate cyclase activity. Science. 1982;216(4552):1329–1330. doi:10.1126/SCIENCE.6123152
  • Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, et al. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br J Nutr. 2008;99(4):756–763. doi:10.1017/S0007114507841122
  • McCarty MF, DiNicolantonio JJ. Neuroprotective potential of high-dose biotin. Med Hypotheses. 2017;109:145–149. doi:10.1016/J.MEHY.2017.10.012
  • Ezeriņa D, Takano Y, Hanaoka K, Urano Y, Dick TP. N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H 2 S and sulfane sulfur production. Cell Chem Biol. 2018;25(4):447–459.e4. doi:10.1016/J.CHEMBIOL.2018.01.011
  • Dinicolantonio JJ, Okeefe JH, McCarty MF. Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart. 2017;4(1):e000600. doi:10.1136/OPENHRT-2017-000600
  • Zuhra K, Tomé CS, Masi L, et al. N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells. Cells. 2019;8(8):828. doi:10.3390/CELLS8080828
  • Bourgonje AR, Offringa AK, van Eijk LE, et al. N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid Redox Signal. 2021. doi:10.1089/ARS.2020.8247
  • Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-acetylcysteine-a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–359. doi:10.1016/J.COPH.2007.04.005
  • Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8(12):1955–1962. doi:10.1517/14728220802517901
  • Sun Q, Wang B, Li Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: Randomized, Double-Blind, Placebo-Controlled Study. Hypertension. 2016;67(3):541–549. doi:10.1161/HYPERTENSIONAHA.115.06624
  • Guizoni DM, Freitas IN, Victorio JA, et al. Taurine treatment reverses protein malnutrition-induced endothelial dysfunction of the pancreatic vasculature: the role of hydrogen sulfide. Metabolism. 2021;116:154701. doi:10.1016/J.METABOL.2021.154701
  • Nam SY, Kim HM, Jeong HJ. The potential protective role of taurine against experimental allergic inflammation. Life Sci. 2017;184:18–24. doi:10.1016/J.LFS.2017.07.007
  • Zhou J, Lu Y, Li F, Wu W, Xie D, Feng Y. In vitro and in vivo antiallergic effects of taurine on allergic rhinitis. Int Arch Allergy Immunol. 2020;181(6):404–416. doi:10.1159/000505209
  • Maeda Yamamoto M, Ema K, Monobe M, Tokuda Y, Tachibana H. Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release. J Agric Food Chem. 2012;60(9):2165–2170. doi:10.1021/JF204497B
  • Masuda S, Maeda-Yamamoto M, Usui S, Fujisawa T. “Benifuuki” green tea containing O-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double- blind, placebo-controlled trial. Allergol Int. 2014;63(2):211–217. doi:10.2332/ALLERGOLINT.13-OA-0620
  • Maeda-Yamamoto M, Ema K, Monobe M, et al. The efficacy of early treatment of seasonal allergic rhinitis with benifuuki green tea containing O-methylated catechin before pollen exposure: an Open Randomized Study. Allergol Int. 2009;58(3):437–444. doi:10.2332/ALLERGOLINT.08-OA-0066
  • Oritani Y, Setoguchi Y, Ito R, Maruki-Uchida H, Ichiyanagi T, Ito T. Comparison of (−)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats. Biol Pharm Bull. 2013;36(10):1577–1582. doi:10.1248/BPB.B13-00349
  • Maeda-Yamamoto M, Ema K, Tokuda Y, et al. Effect of green tea powder (Camellia sinensis L. cv. Benifuuki) particle size on O-methylated EGCG absorption in rats; the Kakegawa Study. Cytotechnology. 2011;63(2):171–179. doi:10.1007/S10616-010-9331-8
  • Inoue T, Suzuki Y, Ra C. Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction. Free Radic Biol Med. 2010;49(4):632–640. doi:10.1016/J.FREERADBIOMED.2010.05.015
  • Yamashita K, Suzuki Y, Matsui T, et al. Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway. Biochem Biophys Res Commun. 2000;274(3):603–608. doi:10.1006/BBRC.2000.3200
  • Fujimura Y, Tachibana H, Maeda-Yamamoto M, Miyase T, Sano M, Yamada K. Antiallergic tea catechin, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FcεRl expression in human basophilic KU812 cells. J Agric Food Chem. 2002;50(20):5729–5734. doi:10.1021/JF025680Z
  • Nishikawa H, Wakano K, Kitani S. Inhibition of NADPH oxidase subunits translocation by tea catechin EGCG in mast cell. Biochem Biophys Res Commun. 2007;362(2):504–509. doi:10.1016/J.BBRC.2007.08.015
  • Fujimura Y, Sumida M, Sugihara K, Tsukamoto S, Yamada K, Tachibana H. Green tea polyphenol EGCG sensing motif on the 67-kDa laminin receptor. PLoS One. 2012;7(5):5. doi:10.1371/JOURNAL.PONE.0037942
  • Fujimura Y, Yamada K, Tachibana H. A lipid raft-associated 67 kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcεRI expression. Biochem Biophys Res Commun. 2005;336(2):674–681. doi:10.1016/J.BBRC.2005.08.146
  • Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H. The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem Biophys Res Commun. 2006;348(2):524–531. doi:10.1016/J.BBRC.2006.07.086
  • Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H. The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun. 2007;364(1):79–85. doi:10.1016/J.BBRC.2007.09.095
  • Adachi S, Nagao T, To S, et al. (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis. 2008;29(10):1986–1993. doi:10.1093/CARCIN/BGN128