184
Views
6
CrossRef citations to date
0
Altmetric
Original Research

PM2.5 Aggravated OVA-Induced Epithelial Tight Junction Disruption Through Fas Associated via Death Domain-Dependent Apoptosis in Asthmatic Mice

, , , , , , & show all
Pages 1411-1423 | Published online: 20 Nov 2021

References

  • Dhami S, Nurmatov U, Agache I, et al. Allergen immunotherapy for allergic asthma: protocol for a systematic review. Clin Transl Allergy. 2016;6(1):1–5.
  • Nawijn MC, Hackett TL, Postma DS, Oosterhout A, Heijink IH. E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol. 2011;32(6):248–255. doi:10.1016/j.it.2011.03.004
  • Le S. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci. 2012;1258:9–18. doi:10.1111/j.1749-6632.2012.06613.x
  • Kazunari S, Kenji K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol. 2020;107(5):749–762. doi:10.1002/JLB.5MR0120-230R
  • Folkerts G, Nijkamp FP. Airway epithelium: more than just a barrier! Trends Pharmacol Sci. 1998;19(8):334–341. doi:10.1016/S0165-6147(98)01232-2
  • Goto Y, Uchida Y, Nomura A, et al. Dislocation of E-cadherin in the airway epithelium during an antigen-induced asthmatic response. Am J Respir Cell Mol Biol. 2000;23(6):712. doi:10.1165/ajrcmb.23.6.4031
  • Tourneur L, Chiocchia G. FADD: a regulator of life and death. Trends Immunol. 2010;31(7):260–269. doi:10.1016/j.it.2010.05.005
  • Kirrane EF, Luben TJ, Benson A, et al. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ Int. 2019;127:305–316. doi:10.1016/j.envint.2019.02.027
  • Li R, Kou X, Hong G, Xie J, Dong C. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. Chem Res Toxicol. 2015;28(3):408–418. doi:10.1021/tx5003723
  • Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2006;1(1):15025. doi:10.1038/nrdp.2015.25.
  • O’ Connor GT, Neas L, Vaughn B, et al. Acute respiratory health effects of air pollution on children with asthma in US inner cities. J Allergy Clin Immunol. 2008;121(5):1133–1139.e1131. doi:10.1016/j.jaci.2008.02.020
  • Andersen ZJ, Loft S, Ketzel M, et al. Ambient air pollution triggers wheezing symptoms in infants. Thorax. 2008;63(8):710–716. doi:10.1136/thx.2007.085480
  • Lei Z, Xiang H, Ying XC, et al. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol Environ Saf. 2021;220:12408.
  • He X, Zhang L, Xiong A, Ran Q, Li G. PM2.5 aggravates NQO1-induced mucus hyper-secretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicol Environ Saf. 2021;218(12):112272. doi:10.1016/j.ecoenv.2021.112272
  • Song Q, He X, Xiong Y, Wang J, Li G. The functional landscape of Golgi membrane protein 1 (GOLM1) phosphoproteome reveal GOLM1 regulating P53 that promotes malignancy. Cell Death Discov. 2021;7(1):42. doi:10.1038/s41420-021-00422-2
  • Xie T, Luo GY, Zhang Y, et al. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFκB. Clin Exp Allergy. 2015;45(12):1812–1822.
  • Liang X, He X, Li Y, et al. Lyn regulates epithelial–mesenchymal transition in CS-exposed model through Smad2/3 signaling. Respir Res. 2019;20(2):1–2.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102
  • Heijink IH, Kuchibhotla VN, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75(8);1902–1917.
  • Haddad A, Gaudet M, Plesa M, et al. Neutrophils from severe asthmatic patients induce epithelial to mesenchymal transition in healthy bronchial epithelial cells. Respir Res. 2019;20:1–4.
  • Aibar S, González-Blas C, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–1086.
  • Mouasni S, Tourneur L. FADD at the crossroads between cancer and inflammation. Trends Immunol. 2018;14(11):39.
  • Ai S, Qian ZM, Guo Y, et al. Long-term exposure to ambient fine particles associated with asthma: a cross-sectional study among older adults in six low- and middle-income countries. Environ Res. 2019;168:141–145. doi:10.1016/j.envres.2018.09.028
  • Tian Y, Xiang X, Juan J, et al. Fine particulate air pollution and hospital visits for asthma in Beijing, China. Environ Pollut. 2017;230:227. doi:10.1016/j.envpol.2017.06.029
  • Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.
  • Eisner M, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. doi:10.1164/rccm.200811-1757ST
  • Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Manag Care Interface. 2017;10(9):80–82.
  • Shukla A, Timblin C, Berube K, Gordon T, Mossman BT. Inhaled particulate matter causes expression of nuclear factor (NF)- κ B–related genes and oxidant-dependent NF- κ B activation in vitro. Am J Respir Cell Mol Biol. 2000;23(2):182–187. doi:10.1165/ajrcmb.23.2.4035
  • Ogino K, Zhang R, Takahashi H, et al. Allergic airway inflammation by nasal inoculation of Particulate Matter (PM2.5) in NC/Nga mice. PLoS One. 2014;9(3):3. doi:10.1371/journal.pone.0092710
  • Yu PF, Pang LL, Mao QS, et al. Dose dependency PM2.5 aggravated airway inflammation in asthmatic mice via down-regulating expression of ITGB4. Eur Rev Med Pharmacol Sci. 2019;23(4):1688–1697.
  • He M, Ichinose T, Yea Y. Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Sci Rep. 2017;7(1):11027. doi:10.1038/s41598-017-11471-y
  • Wang H, Song L, Ju W, et al. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci Rep. 2017;7(1):44256. doi:10.1038/srep44256
  • Qian S, Jie F, Billiar TR, Scott MJ. Inflammasome and autophagy regulation: a two-way street. Mol Med. 2017;23(1):188–195.
  • Jiménez-Salazar J, Posadas-Rodríguez P, Lazzarini-Lechuga RC, et al. Membrane-initiated estradiol signaling of epithelial-mesenchymal transition-associated mechanisms through regulation of tight junctions in human breast cancer cells. Horm Cancer. 2014;5(3):161–173. doi:10.1007/s12672-014-0180-3
  • Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15(2):117–134. doi:10.1007/s10911-010-9178-9
  • Liu S, Wei Y, Le S, Turner JR, Wang T. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol. 2009;83(4):2011–2014. doi:10.1128/JVI.01888-08
  • Evans MJ, Hahn TV, Tscherne DM, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446(7137):801–805. doi:10.1038/nature05654
  • Bruewer, Matthias, Utech, Bruewer M, Utech M, Ivanov AI, et al. Interferon-γ induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 2005;19(8):923–933. doi:10.1096/fj.04-3260com.
  • Prasad S, Mingrino R, Kaukinen K, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005;85(9):1139–1162.
  • Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 2009;1788(4):872–891. doi:10.1016/j.bbamem.2008.11.005
  • Oz HS, Ebersole JL. Green tea polyphenols mediated apoptosis in intestinal epithelial cells by a fadd-dependent pathway. J Cancer Ther. 2010;1(3):105.
  • Wan H, Winton HL, Soeller C, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy. 2001;31(2):279–294. doi:10.1046/j.1365-2222.2001.00970.x