125
Views
0
CrossRef citations to date
0
Altmetric
Original Research

PTPRH Alleviates Airway Obstruction and Th2 Inflammation in Asthma as a Protective Factor

, , , ORCID Icon, , , , & show all
Pages 133-144 | Published online: 02 Feb 2022

References

  • Holgate S. Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy Asthma Immunol Res. 2013;5:343–347. doi:10.4168/aair.2013.5.6.343
  • Wenzel S. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18:716–725. doi:10.1038/nm.2678
  • Nassoro D, Mujwahuzi L, Mwakyula I, et al. Asthma and COVID-19: emphasis on adequate asthma control. Can Respir J. 2021;2021:9621572. doi:10.1155/2021/9621572
  • Nunes C, Pereira A, Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017;3:1. doi:10.1186/s40733-016-0029-3
  • Athari S. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther. 2019;4:45. doi:10.1038/s41392-019-0079-0
  • Guo F, Uetani K, Haque S, et al. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. J Clin Invest. 1997;100:829–838. doi:10.1172/JCI119598
  • Gras D, Chanez P, Vachier I, et al. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther. 2013;140:290–305.
  • Neel B, Tonks N. Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol. 1997;9:193–204. doi:10.1016/S0955-0674(97)80063-4
  • Yao Z, Darowski K, St-Denis N, et al. A global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell. 2017;65:347–360. doi:10.1016/j.molcel.2016.12.004
  • Matozaki T, Murata Y, Mori M, et al. Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cell Signal. 2010;22:1811–1817. doi:10.1016/j.cellsig.2010.07.001
  • Jia Z, Bao K, Wei P, et al. EGFR activation-induced decreases in claudin1 promote MUC5AC expression and exacerbate asthma in mice. Mucosal Immunol. 2021;14(1):125–134. doi:10.1038/s41385-020-0272-z
  • Chen X, Yang J, Shen H, et al. Muc5ac production inhibited by decreased lncRNA H19 via PI3K/Akt/NF-kB in asthma. J Asthma Allergy. 2021;14:1033–1043. doi:10.2147/JAA.S316250
  • Julien S, Dubé N, Hardy S, et al. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11:35–49. doi:10.1038/nrc2980
  • Sato T, Soejima K, Arai E, et al. Prognostic implication of PTPRH hypomethylation in non-small cell lung cancer. Oncol Rep. 2015;34:1137–1145. doi:10.3892/or.2015.4082
  • Rennhack J, To B, Swiatnicki M, et al. Integrated analyses of murine breast cancer models reveal critical parallels with human disease. Nat Commun. 2019;10:3261. doi:10.1038/s41467-019-11236-3
  • El-Hashim A, Khajah M, Renno W, et al. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model. Sci Rep. 2017;7:9919. doi:10.1038/s41598-017-09349-0
  • Pan H, Hsiao Y, Chen P, et al. Epithelial growth factor receptor tyrosine kinase inhibitors alleviate house dust mite allergen Der p2-induced IL-6 and IL-8. Environ Toxicol. 2019;34:476–485. doi:10.1002/tox.22701
  • Corcoran Timothy E, Huber Alex S, Hill Sherri L, et al. Mucociliary clearance differs in mild asthma by levels of type 2 inflammation. Chest. 2021;160(5):1604–1613. doi:10.1016/j.chest.2021.05.013
  • Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164. doi:10.1183/13993003.00164-2019
  • American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171:912–930. doi:10.1164/rccm.200406-710ST
  • Zhen G, Park SW, Nguyenvu LT, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007;36:244–253. doi:10.1165/rcmb.2006-0180OC
  • Peters MC, Mekonnen ZK, Yuan S, et al. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133:388–394. doi:10.1016/j.jaci.2013.07.036
  • Yi L, Zhang S, Feng Y, et al. Increased epithelial galectin-13 expression associates with eosinophilic airway inflammation in asthma. Clin Exp Allergy. 2021;51(12):1566–1576. doi:10.1111/cea.13961
  • Matozaki T, Suzuki T, Uchida T, et al. Molecular cloning of a human transmembrane-type protein tyrosine phosphatase and its expression in gastrointestinal cancers. J Biol Chem. 1994;269:2075–2081. doi:10.1016/S0021-9258(17)42137-5
  • Lai HY, Rogers DF. Mucus hypersecretion in asthma: intracellular signalling pathways as targets for pharmacotherapy. Curr Opin Allergy Clin Immunol. 2010;10:67–76. doi:10.1097/ACI.0b013e328334643a
  • Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest. 2018;154:169–176. doi:10.1016/j.chest.2017.11.008
  • Shin IS, Park JW, Shin NR, et al. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. J Pineal Res. 2014;56:398–407. doi:10.1111/jpi.12127
  • Xie T, Luo G, Zhang Y, et al. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFkappaB. Clin Exp Allergy. 2015;45:1812–1822. doi:10.1111/cea.12606
  • Hur G, Lee S, Lee S, et al. Potential use of an anticancer drug gefinitib, an EGFR inhibitor, on allergic airway inflammation. Exp Mol Med. 2007;39:367–375. doi:10.1038/emm.2007.41
  • Inoue H, Akimoto K, Homma T, et al. Airway epithelial dysfunction in asthma: relevant to epidermal growth factor receptors and airway epithelial cells. J Clin Med. 2020;9:3698. doi:10.3390/jcm9113698