161
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Difference of Serum Cytokine Profile in Allergic Asthma Patients According to Disease Severity

, , , , , , , , & show all
Pages 315-326 | Published online: 06 Mar 2022

References

  • Khurana S, Jarjour NN. Systematic approach to asthma of varying severity. Clin Chest Med. 2019;40(1):59–70. doi:10.1016/j.ccm.2018.10.004
  • Nanda A, Wasan AN. Asthma in Adults. Med Clin North Am. 2020;104(1):95–108. doi:10.1016/j.mcna.2019.08.013
  • Rehman A, Amin F, Sadeeqa S. Prevalence of asthma and its management: a review. JPMA. 2018;68(12):1823–1827.
  • Zissler U, Esser-von Bieren J, Jakwerth CA, et al. Current and future biomarkers in allergic asthma. Allergy. 2016;71(4):475–494. doi:10.1111/all.12828
  • Agache I, Akdis C, Jutel M, et al. Untangling asthma phenotypes and endotypes. Allergy. 2012;67(7):835–846. doi:10.1111/j.1398-9995.2012.02832.x
  • Poga B, Mma C. The 2019 global initiative for asthma report: evidence-based or evidence-biased medicine? Therapies. 2021;76(1):57–58. doi:10.1016/j.therap.2020.02.021
  • Brusasco V, Viegi G. The ATS/ERS consensus on clinical Pulmonary function testing. Breathe. 2005;2(1):9–10.
  • Lei W, Li F, Tang X-M, et al. The comparison of two exhaled nitric oxide analyzers: NIOX VERO and SUNVOU-CA2122. J Breath Res. 2021;15(2):026007. doi:10.1088/1752-7163/abd193
  • American Thoracic Society. European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med. 2005;171:912–930
  • Fan X, Zhao N, Yu Z, et al. Clinical utility of central and peripheral airway nitric oxide in aging patients with stable and acute exacerbated chronic obstructive pulmonary disease. Int J Gen Med. 2021;14:571–580. doi:10.2147/IJGM.S284688
  • Hosoki K, Ying S, Corrigan C, et al. Analysis of a panel of 48 cytokines in bal fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLoS One. 2015;10(5):e0126035. doi:10.1371/journal.pone.0126035
  • Shannon J, Ernst P, Yamauchi Y, et al. Differences in airway cytokine profile in severe asthma compared to moderate asthma. Chest. 2008;133(2):420–426. doi:10.1378/chest.07-1881
  • Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 1999;10(1):61.
  • Sousa AR, Lane SJ, Nakhosteen JA, et al. Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am J Respir Cell Mol Biol. 1994;10(2):142. doi:10.1165/ajrcmb.10.2.8110469
  • Huber AK, Giles DA, Segal BM, et al. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol. 2018;189:29–33. doi:10.1016/j.clim.2016.09.010
  • Coleman JM, Naik C, Holguin F, et al. Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset. Thorax. 2012;67(12):1061. doi:10.1136/thoraxjnl-2012-201634
  • Ying S, Robinson DS, Meng Q, et al. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol. 2010;27(12):3507–3516.
  • Chupp GL, Lee CG, Jarjour N, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–2027. doi:10.1056/NEJMoa073600
  • Gomez JL, Yan X, Holm CT, et al. Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J. 2017;50(4):1700800. doi:10.1183/13993003.00800-2017
  • Roslind A, Johansen JS. YKL-40: a novel marker shared by chronic inflammation and oncogenic transformation. In: Kozlov SV, editor. Inflammation and Cancer: Methods and Protocols: Volume 1: Experimental Models and Practical Approaches. Totowa, NJ: Humana Press; 2009:159–184.
  • Ilmarinen P, Tuomisto LE, Niemelä O, et al. YKL-40 and adult-onset asthma: elevated levels in clusters with poorest outcome. J Allergy Clin Immunol Pract. 2019;7(7):2466–2468.e3. doi:10.1016/j.jaip.2019.03.043
  • Wang J, Lv H, Luo Z, et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res. 2018;19(1):1–10. doi:10.1186/s12931-018-0755-6
  • Nakajima H, Hirose K. Role of IL-23 and Th17 cells in airway inflammation in asthma. Immune Netw. 2010;10(1):1–4. doi:10.4110/in.2010.10.1.1
  • Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178(10):1023–1032. doi:10.1164/rccm.200801-086OC
  • Moreira AP, Cavassani KA, Ismailoglu UB, et al. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest. 2011;121(11):4420–4432. doi:10.1172/JCI44999
  • Elaidy SM, Essawy SS, Hussain MA, El-Kherbetawy MK, Hamed ER. Modulation of the IL-23/IL-17 axis by fenofibrate ameliorates the ovalbumin/lipopolysaccharide-induced airway inflammation and bronchial asthma in rats. Naunyn Schmiedebergs Arch Pharmacol. 2017;391(3):309–321.
  • Lai T, Wu D, Li W, et al. Interleukin-31 expression and relation to disease severity in human asthma. Sci Rep. 2016;6:22835. doi:10.1038/srep22835
  • Neuper T, Neureiter D, Sarajlic M, et al. IL-31 transgenic mice show reduced allergen-induced lung inflammation. Eur J Immunol. 2020;51(1):191–196. doi:10.1002/eji.202048547
  • Perrigoue JG, Li J, Zaph C, et al. IL-31–IL-31R interactions negatively regulate type 2 inflammation in the lung. J Exp Med. 2007;204(3):481–487.
  • Huang J, Yue H, Jiang T, et al. IL-31 plays dual roles in lung inflammation in an OVA-induced murine asthma model. Biol Open. 2019;8(1). doi:10.1242/bio.036244
  • Corren J. Role of Interleukin-13 in Asthma. Curr Allergy Asthma Rep. 2013;13(5):415–420. doi:10.1007/s11882-013-0373-9
  • Collison A, Li J, Pereira de Siqueira A. Tumor necrosis factor-related apoptosis-inducing ligand regulates hallmark features of airways remodeling in allergic airways disease. Am J Respir Cell Mol Biol. 2014;51(1):86–93. doi:10.1165/rcmb.2013-0490OC
  • Weckmann M, Collison A, Simpson JL, et al. Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nat Med. 2007;13(11):1308. doi:10.1038/nm1660
  • Robertson NM, Rosemiller M, Lindemeyer RG, Steplewski A, Zangrilli JG, Litwack G. TRAIL in the airways. Vitam Horm. 2004;67(67):149–167.
  • Corrigan CJ, Wang W, Meng Q. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol. 2011;128(1):116–124. doi:10.1016/j.jaci.2011.03.043
  • Dolgachev V, Petersen BC, Budelsky AL, et al. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J Immunol. 2009;183(9):5705–5715. doi:10.4049/jimmunol.0901666
  • Wang YH, Angkasekwinai P, Lu N, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated Th2 memory cells. J Exp Med. 2007;204(8):1837–1847. doi:10.1084/jem.20070406
  • Hong HY, Chen F-H, Sun Y-Q, et al. Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps. Allergy. 2018;73(2):459–469. doi:10.1111/all.13267