154
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Role of Chemokines and Inflammatory Cells in Respiratory Allergy

ORCID Icon &
Pages 1805-1822 | Received 08 Nov 2022, Accepted 05 Dec 2022, Published online: 21 Dec 2022

References

  • Mazzi V, Fallahi P. Allergic rhinitis and CXCR3 chemokines. Clin Ter. 2017;168(1):e54–e58.
  • Liu CT. 过敏性哮喘防治的重要性与特殊性[J] [The significance and particularity of prevention and treatment of allergic asthma]. Zhonghua Nei Ke Za Zhi. 2019;58(9):628–629. Chinese.
  • Editorial Board, C.J.o.P., t.S.o.P.C.M.A. Subspecialty Group of Respiratory Diseases, and t.S.o.P.O.C.M.D.A. 儿童支气管哮喘规范化诊疗建议 (2020年版) Children‘s respiratory professional committee, [Recommendations for diagnosis and management of bronchial asthma in children (2020)]. Zhonghua Er Ke Za Zhi. 2020;58(9):708–717. Chinese.
  • Nanda A, Baptist AP, Divekar R, et al. Asthma in the older adult. J Asthma. 2020;57(3):241–252.
  • Erle DJ, Sheppard D. The cell biology of asthma. J Cell Biol. 2014;205(5):621–631.
  • Brightling CE, Bradding P, Symon FA, et al. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med. 2002;346(22):1699–1705.
  • Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007;120(6):1233–44; quiz 1245–6.
  • Bonser LR, Erle DJ. The airway epithelium in asthma. Adv Immunol. 2019;142:1–34.
  • Calv¨¦n J, Ax E, R?dinger M. The airway epithelium-A Central player in asthma pathogenesis. Int J Mol Sci. 2020;21:23.
  • Zazara DE, Wegmann M, Giannou AD, et al. A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. J Allergy Clin Immunol. 2020;145(6):1641–1654.
  • Song J, Wang J. SIRT3 regulates bronchial epithelium apoptosis and aggravates airway inflammation in asthma. Mol Med Rep. 2022;25:4.
  • Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75(7):1606–1617.
  • Bunyavanich S, Melen E, Wilk JB, et al. Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma. Clin Mol Allergy. 2011;9:1.
  • Mitchell PD, O’Byrne PM. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther. 2017;169:104–112.
  • Gao W, Li L, Wang Y, et al. Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015;20(5):722–729.
  • Mitchell PD, O’Byrne PM. Epithelial-Derived Cytokines in Asthma. Chest. 2017;151(6):1338–1344.
  • Berghi NO, Dumitru M, Vrinceanu D, et al. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med. 2020;20(3):2352–2360.
  • Bacharier LB, Maspero JF, Katelaris CH, et al. Dupilumab in children with uncontrolled moderate-to-severe asthma. N Engl J Med. 2021;385(24):2230–2240.
  • Hong GH, Kwon HS, Moon KA, et al. Clusterin modulates allergic airway inflammation by attenuating CCL20-mediated dendritic cell recruit ment. J Immunol. 2016;196(5):2021–2030.
  • Nygaard U, Hvid M, Johansen C, et al. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood ato pic dermatitis. J Eur Acad Dermatol Venereol. 2016;30(11):1930–1938.
  • Chauhan A, Singh M, Agarwal A, et al. Correlation of TSLP, IL-33, and CD4?+?CD25?+?FOXP3?+?T regulatory (Treg) in pediatric asthma. J Asthma. 2015;52(9):868–872.
  • O’Byrne PM. Introduction: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):1s–3s.
  • Bisset LR, Schmid-Grendelmeier P. Chemokines and their receptors in the pathogenesis of allergic asthma: progress and perspective. Curr Opin Pulm Med. 2005;11(1):35–42.
  • Kim JJ, Lee JH, Jang CH, et al. Chemokine RANTES promoter polymorphisms in allergic rhinitis. Laryngoscope. 2004;114(4):666–669.
  • Tian C, Lei X, Shui M, et al. The expression and significance of chemokines eotaxin and RANTES in the rat model of allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2014;28(14):1069–1071.
  • Peric A, Sotirović J, Špadijer‐Mirković C, et al. Nonselective chemokine levels in nasal secretions of patients with perennial nonallergic and allergic rhinitis. Int Forum Allergy Rhinol. 2016;6(4):392–397.
  • Yan Y, Bao HP, Li CL, et al. Wentong decoction cures allergic bronchial asthma by regulating the apoptosis imbalance of EOS. Chin Med. 2018;13:21.
  • Errahali YJ, Thomas LD, Keller TC, et al. Inhibition by new glucocorticoid antedrugs [16¦Á, 17¦Á-d] isoxazoline and [16¦Á, 17¦Á-d]-3’-hydroxy-imino formyl isoxazoline derivatives of chemotaxis and CCL26, CCL11, IL-8, and RANTES secretion. J Interferon Cytokine Res. 2013;33(9):493–507.
  • Zhang YG, Huang J, Zhang J, et al. RANTES gene polymorphisms and asthma risk: a meta-analysis. Arch Med Res. 2010;41(1):50–58.
  • Asosingh K, Vasanji A, Tipton A, et al. Eotaxin-rich proangiogenic hematopoietic progenitor cells and CCR3+ endothelium in the atopic asthmat ic response. J Immunol. 2016;196(5):2377–2387.
  • Elsner J, Kapp A. The chemokine network in eosinophil activation. Allergy Asthma Proc. 2001;22(3):139–148.
  • Rose CE, Lannigan JA, Kim P, et al. Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol Immunol. 2010;7(5):361–374.
  • Gangur V, Oppenheim JJ. Are chemokines essential or secondary participants in allergic responses? Ann Allergy Asthma Immunol. 2000;84(6):569–79; quiz 579–581.
  • Bonner K, Pease JE, Corrigan CJ, et al. CCL17/thymus and activation-regulated chemokine induces calcitonin gene-related peptide in human airw ay epithelial cells through CCR4. J Allergy Clin Immunol. 2013;132(4):942–950.
  • Abelius MS, Ernerudh J, Berg G, et al. High cord blood levels of the T-helper 2-associated chemokines CCL17 and CCL22 precede allergy develo pment during the first 6 years of life. Pediatr Res. 2011;70(5):495–500.
  • Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–680.
  • Juremalm M, Olsson N, Nilsson G. CCL17 and CCL22 attenuate CCL5-induced mast cell migration. Clin Exp Allergy. 2005;35(6):708–712.
  • Esaki H, Takeuchi S, Furusyo N, et al. Levels of immunoglobulin E specific to the major food allergen and chemokine (C-C motif) ligand (CCL) 17/thymus and activation regulated chemokine and CCL22/macrophage-derived chemokine in infantile ato pic dermatitis on Ishigaki Island. J Dermatol. 2016;43(11):1278–1282.
  • Yeh KW, Chiu CY, Su KW, et al. High cord blood CCL22/CXCL10 chemokine ratios precede allergic sensitization in early childhood. Oncotarget. 2017;8(5):7384–7390.
  • Chiu CY, Su KW, Tsai MH, et al. Low mother-to-child CCL22 chemokine levels are inversely related to mite sensitization and asthma in early childhood. Sci Rep. 2018;8(1):6043.
  • Julia V. CX3CL1 in allergic diseases: not just a chemotactic molecule. Allergy. 2012;67(9):1106–1110.
  • El-Shazly AE, Doloriert HC, Bisig B, et al. Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechani sm for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy. 2013;43(3):322–331.
  • Chen T, Guo ZP, Jiao XY, et al. CCL5, CXCL16, and CX3CL1 are associated with Henoch-Schonlein purpura. Arch Dermatol Res. 2011;303(10):715–725.
  • Fern¨¢ndez-Prieto M, Bodas A, Farrais S, et al. CX3CL1-CX3CR1 axis: a new player in coeliac disease pathogenesis. Nutrients. 2019;11:10.
  • Riopel M, Vassallo M, Ehinger E, et al. CX3CL1-Fc treatment prevents atherosclerosis in Ldlr KO mice. Mol Metab. 2019;20:89–101.
  • Lapointe F, Turcotte S, Véronneau S, et al. Role of protein tyrosine phosphatase epsilon (PTP¦Å) in Leukotriene D4-induced CXCL8 expression. J Pharmacol Exp Ther. 2019;369(2):270–281.
  • Larson EM, Babasyan S, Wagner B. IgE-binding monocytes have an enhanced ability to produce IL-8 (CXCL8) in animals with naturally occu rring allergy. J Immunol. 2021;206(10):2312–2321.
  • Tanabe T. IL-33 stimulates CXCL8/IL-8 secretion in goblet cells but not normally differentiated airway cells. Clin Exp Allergy. 2014;44(4):540–552.
  • Ragusa F, Fallahi P. IP-10 in occupational asthma: review of the literature and case-control study. Clin Ter. 2017;168(2):e151–e157.
  • Tworek D, Kuna P, Młynarski W, et al. MIG (CXCL9), IP-10 (CXCL10) and I-TAC (CXCL11) concentrations after nasal allergen challenge in patie nts with allergic rhinitis. Arch Med Sci. 2013;9(5):849–853.
  • Arikoglu T, Akyilmaz E, Yildirim DD, et al. The relation of innate and adaptive immunity with viral-induced acute asthma attacks: focusing on IP- 10 and cathelicidin. Allergol Immunopathol. 2017;45(2):160–168.
  • Glatzer F, Mommert S, Köther B, et al. Histamine downregulates the Th1-associated chemokine IP-10 in monocytes and myeloid dendritic cells. Int Arch Allergy Immunol. 2014;163(1):11–19.
  • Godot V, Arock M, Garcia G, et al. H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol. 2007;120(4):827–834.
  • Eddleston J, Christiansen SC, Zuraw BL. Functional expression of the C-X-C chemokine receptor CXCR4 by human bronchial epithelial cells: regu lation by proinflammatory mediators. J Immunol. 2002;169(11):6445–6451.
  • Liu C, Zhang X, Xiang Y, et al. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep. 2018;17(5):6935–6941.
  • Tan J, Tedrow JR, Nouraie M, et al. Loss of twist1 in the mesenchymal compartment promotes increased fibrosis in experimental lung injury by enhanced expression of CXCL12. J Immunol. 2017;198(6):2269–2285.
  • Baumann R, Rabaszowski M, Stenin I, et al. Comparison of the nasal release of IL-4, IL-10, IL-17, CCL13/MCP-4, and CCL26/eotaxin-3 in allergic r hinitis during season and after allergen challenge. Am J Rhinol Allergy. 2013;27(4):266–272.
  • Bruno G. Cetirizine, a second-generation H1 antagonist, modulates Rantes and MCP-1 levels in allergic rhinitis. Int J Immunopathol Pharmacol. 2002;15(2):113–118.
  • Grger M, Klemens C, Wendt S, et al. Mediators and cytokines in persistent allergic rhinitis and nonallergic rhinitis with eosinophilia sy ndrome. Int Arch Allergy Immunol. 2012;159(2):171–178.
  • Chen M, Zhou P, He G, et al. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis Guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades. Eur J Pharmacol. 2015;767:98–107.
  • Berghi O, Dumitru M, Caragheorgheopol R, et al. The relationship between chemokine ligand 3 and allergic rhinitis. Cureus. 2020;12(4):e7783.
  • Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy. 2017;72(5):682–690.
  • Smit JJ, Lukacs NW. A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol. 2006;533(1–3):277–288.
  • Kulkarni HS, Liszewski M K, Brody S L, et al. The complement system in the airway epithelium: an overlooked host defense mechanism and therapeutic target? J Allergy Clin Immunol. 2018;141(5):1582–1586.e1.
  • Ordovas-Montanes J, Dwyer D F, Nyquist S K, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018;560(7720):649–654.
  • Steelant B, Seys S F, Van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol. 2018;141(3):951–963.e8.
  • Fukuoka A, Matsushita K, Morikawa T, et al. Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis. J Allergy Clin Immunol. 2019;143(3):1153–1162.e12.
  • Bissonnette Y, Madore A-M, Chakir, J et al. Fibroblast growth factor-2 is a sputum remodeling biomarker of severe asthma. J Asthma. 2014;51(2):119–126.
  • Wang Y, Yang, H, Su, X, et al. TGF-¦Â1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast tra nsformation in lung fibroblast, contributing with the asthma progression. Hereditas. 2021;158(1):47.
  • Pawankar R. Mast cells in allergic airway disease and chronic rhinosinusitis. Mast Cells Allergic Dis. 2005;87:111–129.
  • Amin K. The role of mast cells in allergic inflammation. Respir Med. 2012;106(1):9–14.
  • Zhou YJ, Wang Hu, Sui H-H, et al. Inhibitory effect of baicalin on allergic response in ovalbumin-induced allergic rhinitis Guinea pigs and lipopolysaccharide-stimulated human mast cells. Inflamm Res. 2016;65(8):603–612.
  • Shao YY, Zhou Y-M, Hu M, et al. The anti-allergic rhinitis effect of traditional Chinese medicine of shenqi by regulating mast cell D egranulation and Th1/Th2 cytokine balance. Molecules. 2017;22:3.
  • Zhang K, Liu Y, Yang X, et al. HBV promotes the recruitment of IL-17 secreting T cells via chemokines CCL22 and CCL17. Liver Int. 2020;40(6):1327–1338.
  • He M, Song G, Yu Y, et al. LPS-miR-34a-CCL22 axis contributes to regulatory T cell recruitment in periapical lesions. Biochem Biophys Res Commun. 2015;460(3):733–740.
  • Fan H, Li M, Qin TJ, et al. 变应性鼻炎患者外周血嗜酸性粒细胞及IL-33水平的表达 [Expression of eosinophils and IL-33 levels in peripheral blood of patients with allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(18):1427–1430. Chinese.
  • Nagase H. Regulation of chemokine receptor expression in eosinophils. Int Arch Allergy Immunol. 2001;125(Suppl 1):29–32.
  • Liu LY. Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage f luid after segmental antigen challenge. J Allergy Clin Immunol. 2003;112(3):556–562.
  • Petsky HL, Cates C J, Kew K M, et al. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a sy stematic review and meta-analysis. Thorax. 2018;73(12):1110–1119.
  • Akuthota P, Wang H, Weller PF. Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol. 2010;10(1):14–19.
  • Luo H. 根据变应性鼻炎患者鼻分泌物嗜酸性粒细胞计数调整类固醇治疗的临床意义 [Relationship between eosinophils in nasal discharge and responses to treatment of inhaled glucocorti costeroid in patients with persistent allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2012;26(11):494–498. Chinese.
  • Zhu XH, Wang J L, Huang Q L, et al. 敲除CCR3基因对小鼠嗜酸性粒细胞的作用实验观察 [Effect of CCR3 gene knockout on eosinophils in mice]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(24):1913–1918. Chinese.
  • Zhu XH, Liao B, Liu Ke, et al. Effect of RNA interference therapy on the mice eosinophils CCR3 gene and granule protein in the murin e model of allergic rhinitis. Asian Pac J Trop Med. 2014;7(3):226–230.
  • Shao JB, Luo X-Q, Mo L-H, et al. Twist1 sustains the apoptosis resistance in eosinophils in nasal mucosa of allergic rhinitis. Arch Biochem Biophys. 2021;702:108828.
  • Tang XY, Chen PB, Du DJ, et al. 穴位埋线对哮喘大鼠肺组织中的pMASK信号通路及细胞间黏附因子-1、白细胞介素-4、嗜酸性粒细胞的影响 [Acupoint catgut embedment may reduce airway inflammation reaction by down-regulating ICAM-1 and EOS by suppressing p38MAPK signaling in lung tissue of asthmatic rats]. Zhen Ci Yan Jiu. 2022;47(2):129–134. Chinese.
  • Boita M, Heffler E, Omedè P, et al. Basophil membrane expression of epithelial cytokine receptors in patients with severe asthma. Int Arch Allergy Immunol. 2018;175(3):171–176.
  • Santos AF, Bécares N, Stephens A, et al. The expression of CD123 can decrease with basophil activation: implications for the gating strategy o f the basophil activation test. Clin Transl Allergy. 2016;6:11.
  • Winter NA, Qin L, Gibson P G, et al. Sputum mast cell/basophil gene expression relates to inflammatory and clinical features of severe ast hma. J Allergy Clin Immunol. 2021;148(2):428–438.
  • Caruso M, Cibella F, Emma R, et al. Basophil biomarkers as useful predictors for sublingual immunotherapy in allergic rhinitis. Int Immunopharmacol. 2018;60:50–58.
  • Zidarn M, Košnik M, Šilar M, et al. Sustained effect of grass pollen subcutaneous immunotherapy on suppression of allergen-specific basop hil response; a real-life, nonrandomized controlled study. Allergy. 2015;70(5):547–555.
  • Ando N, Nakamura Y, Ishimaru K, et al. Allergen-specific basophil reactivity exhibits daily variations in seasonal allergic rhinitis. Allergy. 2015;70(3):319–322.
  • Froidure A, Pilette C. Les cellules dedritiques humaines dans I’ ashma et la rhinite allergique [Human dendritic cells in allergic asthma and rhinitis]. Med Sci. 2015;31(2):151–158. French.
  • Murrison LB, Ren X, Preusse K, et al. TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. J Allergy Clin Immunol. 2022;149(1):79–88.
  • Papli¨½ska-Goryca M, Nejman-Gryz P, Proboszcz M, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. 2020;57(1):1–10.
  • Kahl J. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J Clin Invest. 2006;116(3):783–796.
  • Lu M. Inhibition of p21-activated kinase 1 attenuates the cardinal features of asthma through suppressing t he lymph node homing of dendritic cells. Biochem Pharmacol. 2018;154:464–473.
  • Perros F. Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL2 2 in attracting Th2 cells and inducing airway inflammation. Allergy. 2009;64(7):995–1002.
  • Huang W, Song Y, Wang L. Wenshen decoction suppresses inflammation in IL-33-induced asthma murine model via inhibiting ILC2 ac tivation. Ann Transl Med. 2019;7(20):570.
  • Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine. 2015;75(1):14–24.
  • Matsuda M, Tanaka Y, Shimora H, et al. Pathogenic changes in group 2 innate lymphoid cells (ILC2s) in a steroid-insensitive asthma model of mice. Eur J Pharmacol. 2022;916:174732.
  • Wu Y, Yan Y, Su Z, et al. Enhanced circulating ILC2s accompany by upregulated MDSCs in patients with asthma. Int J Clin Exp Pathol. 2015;8(4):3568–3579.
  • Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.
  • Coma G, Peña R, Blanco J, et al. Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and t he production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clin Exp Immunol. 2006;145(3):535–544.
  • Hansen AS, Biltoft M, Bundgaard B, et al. CD46 activation induces distinct CXCL-10 response in monocytes and monocyte-derived dendritic cells. Cytokine. 2019;113:466–469.
  • Wang J, Vodovotz Y, Fan L, et al. Injury-induced MRP8/MRP14 stimulates IP-10/CXCL10 in monocytes/macrophages. FASEB j. 2015;29(1):250–262.
  • Sushak L, Gabure S, Maise J, et al. Dibutyltin alters immune cell production of the pro-inflammatory cytokines interleukin (IL) 1¦Â and IL −6: role of mitogen-activated protein kinases and changes in mRNA. J Appl Toxicol. 2020;40(8):1047–1059.
  • Niessen NM, Baines K J, Simpson J L, et al. Neutrophilic asthma features increased airway classical monocytes. Clin Exp Allergy. 2021;51(2):305–317.