317
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

MicroRNA-146a-5p and microRNA‐210‐3p Correlate with T Regulatory Cells Frequency and Predict Asthma Severity in Egyptian Pediatric Population

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 107-121 | Received 21 Nov 2022, Accepted 10 Jan 2023, Published online: 20 Jan 2023

References

  • Söderhäll C, Schoos AM. Persistent asthma in childhood. Children. 2022;9(6):820. doi:10.3390/children9060820
  • Chan M, Gray M, Burns C, et al. Community-based interventions for childhood asthma using comprehensive approaches: a systematic review and meta-analysis. Allergy Asthma Clin Immunol. 2021;17(1):19. doi:10.1186/s13223-021-00522-9
  • Just J, Bourgoin-Heck M, Amat F. Clinical phenotypes in asthma during childhood. Clin Exp Allergy. 2017;47(7):848–855. doi:10.1111/cea.12939
  • Fainardi V, Esposito S, Chetta A, Pisi G. Asthma phenotypes and endotypes in childhood. Minerva Med. 2022;113(1):94–105. doi:10.23736/S0026-4806.21.07332-8
  • Zhu J, Liu X, Wang W, Ouyang X, Zheng W, Wang Q. Altered expression of regulatory T and Th17 cells in murine bronchial asthma. Exp Ther Med. 2017;14(1):714–722. doi:10.3892/etm.2017.4519
  • Chen J, Zhan C, Zhang L, et al. The hypermethylation of Foxp3 promoter impairs the function of treg cells in EAP. Inflammation. 2019;42(5):1705–1718. doi:10.1007/s10753-019-01030-0
  • Guan Y, Song X, Sun W, Wang Y, Liu B. Effect of hypoxia-induced MicroRNA-210 expression on cardiovascular disease and the underlying mechanism. Oxid Med Cell Longev. 2019;21(2019):4727283. doi:10.1155/2019/4727283
  • Hammad Mahmoud Hammad R, Hamed DHED, Eldosoky MAER, et al. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children. Innate Immun. 2018;24:171–179. doi:10.1177/1753425918763521
  • Kyyaly MA, Sanchez-Elsner T, He P, Sones CL, Arshad SH, Kurukulaaratchy RJ. Circulating miRNAs-A potential tool to identify severe asthma risk? Clin Transl Allergy. 2021;11(4):e12040. doi:10.1002/clt2.12040
  • Zhao M, Wang LT, Liang GP, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol. 2014;150(1):22–30. doi:10.1016/j.clim.2013.10.009
  • Wu R, Zeng J, Yuan J, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. Clin Invest. 2018;128(6):2551–2568. doi:10.1172/JCI97426
  • Lu LF, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142(6):914–929. doi:10.1016/j.cell.2010.08.012
  • Global Initiative for Asthma. Global strategy for asthma management and prevention; 2019. Available from: www.ginasthma.org. Accessed January 13, 2023.
  • Martin J, Townshend J, Brodlie M. Diagnosis and management of asthma in children. BMJ Paediatr Open. 2022;6(1):e001277. doi:10.1136/bmjpo-2021-001277
  • Samita K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018;73(5):993–1002. doi:10.1111/all.13373
  • Humbert M, Bousquet J, Bachert C, et al. IgE-mediated multimorbidities in allergic asthma and the potential for omalizumab therapy. J Allergy Clin Immunol Pract. 2019;7(5):1418–1429. doi:10.1016/j.jaip.2019.02.030
  • Dai H, Zheng R, Wang L, et al. ICS/LABA combined with subcutaneous immunotherapy modulates the Th17/Treg imbalance in asthmatic children. Front Immunol. 2022;13:779072. doi:10.3389/fimmu.2022.779072
  • Birmingham JM, Chesnova B, Wisnivesky JP, et al. The effect of age on T-regulatory cell number and function in patients with asthma. Allergy Asthma Immunol Res. 2021;13(4):646–654. doi:10.4168/aair.2021.13.4.646
  • Harb H, Stephen-Victor E, Crestani E, et al. A regulatory T cell Notch4-GDF15 axis licenses tissue inflammation in asthma. Nat Immunol. 2020 Nov; 21(11):1359–1370.Epub 2020 Sep 14. Erratum in: nat Immunol. 2021 Jan;22(1):100.Erratum in. Nat Immunol. 2021;22(6):794–795. doi:10.1038/s41590-021-00929-x
  • Bakr SI, Mahran MZ, Soliman DA. Role of regulatory CD4+CD25+ Foxp3 T cells in bronchial asthma in Egyptian children. Egypt J Immunol. 2013;20(2):29–38. PMID: 24617045.
  • Song J, Lim HX, Lee A, Kim S, Lee JH, Kim TS. Staphylococcus succinus 14BME20 prevents allergic airway inflammation by induction of regulatory T cells via interleukin-10. Front Immunol. 2019;10:1269. doi:10.3389/fimmu.2019.01269
  • Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39(9):1314–1323. doi:10.1111/j.1365-2222.2009.03301
  • Assaf SM, Hanania NA. Biological treatments for severe asthma. Curr Opin Allergy Clin Immunol. 2019;19(4):379–386. doi:10.1097/ACI.0000000000000549
  • Agache I, Eguiluz-Gracia I, Cojanu C, et al. Advances and highlights in asthma in 2021. Allergy. 2021;76(11):3390–3407. doi:10.1111/all.15054
  • Berghi NO, Dumitru M, Vrinceanu D, et al. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med. 2020;20(3):2352–2360. doi:10.3892/etm.2020.8961
  • Shi YH, Shi GC, Wan HY, et al. An increased ratio of Th2/Treg cells in patients with moderate to severe asthma. Chin Med J. 2013;126(12):2248–2253.
  • Palmer C, Mulligan JK, Smith SE, Atkinson C. The role of regulatory T cells in the regulation of upper airway inflammation. Am J Rhinol Allergy. 2017;31(6):345–351. doi:10.2500/ajra.2017.31.4472
  • Norlander AE, Bloodworth MH, Toki S, et al. Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming. J Clin Invest. 2021;131(7):e140690. doi:10.1172/JCI140690
  • Lopez-Pastrana J, Shao Y, Chernaya V, Wang H, Yang XF. Epigenetic enzymes are the therapeutic targets for CD4(+) CD25(+/high) Foxp3(+) regulatory T cells. Transl Res. 2015;165(1):221–240. doi:10.1016/j.trsl.2014.08.001
  • Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma. Allergy. 2017;72(8):1148–1155. doi:10.1111/all.13139
  • Kutty RK, Nagineni CN, Samuel W, et al. Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ. Mol Vis. 2013;19:737–750. PMID: 23592910; PMCID: PMC3626297.
  • Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377. doi:10.3389/fimmu.2018.01377
  • Liu Z, Zhou G, Deng X, et al. Analysis of miRNA expression profiling in human macrophages responding to Mycobacterium infection: induction of the immune regulator miR-146a. J Infect. 2014;68(6):553–561. doi:10.1016/j.jinf.2013.12.017
  • Kowal K, Pampuch A, Kowal-Bielecka O, DuBuske LM, Bodzenta-łukaszyk A. Platelet activation in allergic asthma patients during allergen challenge with Dermatophagoides pteronyssinus. Clin Exp Allergy. 2006;36(4):426–432. doi:10.1111/j.1365-2222.2006.02446.x
  • Long CM, Lukomska E, Marshall NB, Nayak A, Anderson SE. Potential inhibitory influence of miRNA 210 on regulatory T cells during epicutaneous chemical sensitization. Genes. 2016;8(1):9. doi:10.3390/genes8010009
  • Liu M, Ren T, Lin Z, Hua M. Upregulated miR-146a expression in peripheral blood relates to Th17 and treg imbalance in elder rheumatoid arthritis patients. Lifestyle Genom. 2022;15(3):98–106. doi:10.1159/000525112
  • Kraszula Ł, Eusebio MO, Kuna P, Pietruczuk M. Relationship between CCR5+FoxP3+ Treg cells and forced expiratory volume in 1 s, peak expiratory flow in patients with severe asthma. Postepy Dermatol Alergol. 2021;38(2):262–268. doi:10.5114/ada.2021.106202
  • Zou XL, Chen ZG, Zhang TT, Feng DY, Li HT, Yang HL. Th17/Treg homeostasis, but not Th1/Th2 homeostasis, is implicated in exacerbation of human bronchial asthma. Ther Clin Risk Manag. 2018;14:1627–1636. doi:10.2147/TCRM.S172262
  • Zheng R, Wang F, Huang Y, Xiang Q, Dai H, Zhang W. Elevated Th17 cell frequencies and Th17/Treg ratio are associated with airway hyperresponsiveness in asthmatic children. J Asthma. 2021;58(6):707–716. doi:10.1080/02770903.2020.1737710