233
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Assessment of Fraction of Exhaled Nitric Oxide and Soluble Receptor for Advanced Glycation End Products Biomarkers for Jordanian Asthmatic Children

ORCID Icon, , , , , , & show all
Pages 793-811 | Received 26 Apr 2023, Accepted 12 Jul 2023, Published online: 04 Aug 2023

References

  • Bhakta NR, Woodruff PG. Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev. 2011;242(1):220–232. doi:10.1111/j.1600-065X.2011.01032.x
  • Al-Sheyab NA, Alomari MA. Prevalence, associated factors, and control level of asthma symptoms among adolescents in Northern Jordan. Int J Adolesc Med Health. 2018;32(3). doi:10.1515/IJAMH-2017-0159
  • The Hashemite Kingdom of Jordan The Higher Health Council. The national strategy for health sector in Jordan; 2015.
  • Abu-Ekteish F, Otoom S, Shehabi I. Prevalence of asthma in Jordan: comparison between bedouins and urban schoolchildren using the international study of Asthma and allergies in childhood Phase III protocol. Allergy Asthma Proc. 2009;30(2):181–185. doi:10.2500/AAP.2009.30.3208
  • Mulholland A, Ainsworth A, Pillarisetti N. Tools in Asthma evaluation and management: when and how to use them? Indian J Pediatr. 2018;85(8):651–657. doi:10.1007/s12098-017-2462-6
  • Wan XC, Woodruff PG. Biomarkers in Severe Asthma. Immunol Allergy Clin North Am. 2016;36(3):547. doi:10.1016/J.IAC.2016.03.004
  • Darbà J, Ascanio M, Syk J, Alving K. Economic evaluation of the use of FeNO for the diagnosis and management of Asthma patients in primary care in Sweden. Clin Outcomes Res. 2021;13:289–297. doi:10.2147/CEOR.S306389
  • Mehta S, Lilly CM, Rollenhagen JE, Haley KJ, Asano K, Drazen JM. Acute and chronic effects of allergic airway inflammation on pulmonary nitric oxide production. Am J Physiol Lung Cell Mol Physiol. 1997;272(1):16. doi:10.1152/AJPLUNG.1997.272.1.L124
  • Dweik RA, Boggs PB, Erzurum SC, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–615. doi:10.1164/RCCM.9120-11ST
  • Global Burden of Disease: GBD cause and risk summaries. Available from: https://www.thelancet.com/gbd/summaries. Accessed August 17, 2022.
  • World Health Organization. Asthma. Available from: https://www.who.int/news-room/fact-sheets/detail/asthma. Accessed August 17, 2022.
  • Albataineh E, Al-Zayadneh E, Al-Shagahin H, Soloman A, Altarawneh A, Aldmour I. Asthma control and its predictive factors in adult Asthma Patients. Orig Artic J Clin Med Res. 2019;11(12):807–817. doi:10.14740/jocmr4021
  • Sachs-Olsen C, Lødrup Carlsen KC, Mowinckel P, et al. Diagnostic value of exhaled nitric oxide in childhood asthma and allergy. Pediatr Allergy Immunol. 2010;21(1–Part–II):e213–e221. doi:10.1111/J.1399-3038.2009.00965.X
  • Karrasch S, Linde K, Rücker G, et al. Accuracy of FENO; for diagnosing asthma: a systematic review. Thorax. 2017;72(2):109 LP–116 . doi:10.1136/thoraxjnl-2016-208704
  • Milutinovic PS, Alcorn JF, Englert JM, Crum LT, Oury TD. The receptor for advanced glycation end products is a central mediator of Asthma pathogenesis. Am J Pathol. 2012;181(4):1215–1225. doi:10.1016/J.AJPATH.2012.06.031
  • Sukkar MB, Ullah MA, Gan WJ, et al. RAGE: a new frontier in chronic airways disease. Br J Pharmacol. 2012;167(6):1161–1176. doi:10.1111/J.1476-5381.2012.01984.X
  • Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy. 2021;76(5):1350–1366. doi:10.1111/ALL.14600
  • Lyu Y, Zhao H, Ye Y, et al. Decreased soluble RAGE in neutrophilic asthma is correlated with disease severity and RAGE G82S variants. Mol Med Rep. 2018;17(3):4131–4137. doi:10.3892/MMR.2017.8302/HTML
  • Sukkar MB, Wood LG, Tooze M, et al. Soluble RAGE is deficient in neutrophilic asthma and COPD. Eur Respir J. 2012;39(3):721–729. doi:10.1183/09031936.00022011
  • Zhang F, Su X, Huang G, et al. sRAGE alleviates neutrophilic asthma by blocking HMGB1/RAGE signalling in airway dendritic cells. Sci Rep. 2017;7(1):1–12. doi:10.1038/s41598-017-14667-4
  • Zhou Y, Jiang Y, Wang W, et al. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Hum Immunol. 2012;73(11):1171–1174. doi:10.1016/j.humimm.2012.08.016
  • Raucci A, Cugusi S, Antonelli A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 2008;22(10):3716–3727. doi:10.1096/FJ.08-109033
  • Hudson BI, Carter AM, Harja E, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008;22(5):1572–1580. doi:10.1096/FJ.07-9909COM
  • Li Y, Wu R, Tian Y, Bao T, Tian Z; Allergy ZTAPJ of, 2017 undefined. Fraction of exhaled nitric oxide and soluble receptors for advanced glycation end products are negatively correlated in children with recurrent wheezing. Asian Pac J Allergy Immunol. 2017;35(1):33–37. doi:10.12932/AP0746
  • Patregnani JT, Fujiogi M, Camargo CA, et al. Serum soluble receptor for advanced glycation end products in infants with bronchiolitis: associations with acute severity and recurrent wheeze. Clin Infect Dis an off Publ Infect Dis Soc Am. 2021;73(9):e2665–e2672. doi:10.1093/cid/ciaa1700
  • Liang Y, Hou C, Kong J, et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem. 2015;405(1–2):63–71. doi:10.1007/s11010-015-2396-0
  • Exhaled NO. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912–930. doi:10.1164/RCCM.200406-710ST
  • Nathan RA, Sorkness CA, Kosinski M, et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59–65. doi:10.1016/j.jaci.2003.09.008
  • Liu AH, Zeiger RS, Sorkness CA, et al. The Childhood Asthma Control Test: retrospective determination and clinical validation of a cut point to identify children with very poorly controlled asthma. J Allergy Clin Immunol. 2010;126(2):267–273, 273.e1. doi:10.1016/j.jaci.2010.05.031
  • Dabbaghzadeh A, Tavakol M, Gharagozlou M. The Role of FENO in comparison to spirometry and ACT in control of children Asthma symptoms. Iran J Allergy Asthma Immunol. 2019;18(5):479–486. doi:10.18502/IJAAI.V18I5.1898
  • Waibel V, Ulmer H, Horak E. Assessing asthma control: symptom scores, GINA levels of asthma control, lung function, and exhaled nitric oxide. Pediatr Pulmonol. 2012;47(2):113–118. doi:10.1002/PPUL.21529
  • Green RJ, Klein M, Becker P, et al. Disagreement among common measures of asthma control in children. Chest. 2013;143(1):117–122. doi:10.1378/chest.12-1070
  • Cabral ALB, Vollmer WM, Barbirotto RM, Martins MA. Exhaled nitric oxide as a predictor of exacerbation in children with moderate-to-severe asthma: a prospective, 5-month study. Ann Allergy Asthma Immunol. 2009;103(3):206–211. doi:10.1016/S1081-1206(10)60183-4
  • Vijverberg SJH, Koster ES, Koenderman L, et al. Exhaled NO is a poor marker of asthma control in children with a reported use of asthma medication: a pharmacy-based study. Pediatr Allergy Immunol. 2012;23(6):529–536. doi:10.1111/J.1399-3038.2012.01279.X
  • Knuffman J, Sorkness C, Lemanske RF; RLJJ of allergy and, 2009 undefined. Phenotypic predictors of long-term response to inhaled corticosteroid and leukotriene modifier therapies in pediatric asthma. J Allergy Clin Immunol. 2009;123(2):411–416. doi:10.1016/j.jaci.2008.11.016
  • Cano-Garcinuño A, Carvajal-Urueña I, Díaz-Vázquez CA, et al. 5 Clinical correlates and determinants of airway inflammation in pediatric Asthma. Jiaci.org. 2010;20(4):303–310.
  • Fritsch M, Uxa S, Horak F, et al. Exhaled nitric oxide in the management of childhood asthma: a prospective 6-months study. Pediatr Pulmonol. 2006;41(9):855–862. doi:10.1002/PPUL.20455
  • Di Cicco M, Peroni DG, Ragazzo V, Comberiati P. Application of exhaled nitric oxide (FeNO) in pediatric asthma. Curr Opin Allergy Clin Immunol. 2021;21(2):151–158. doi:10.1097/ACI.0000000000000726
  • Wang X, Tan X, Li Q. Effectiveness of fractional exhaled nitric oxide for asthma management in children: a systematic review and meta-analysis. Pediatr Pulmonol. 2020;55(8):1936–1945. doi:10.1002/PPUL.24898
  • Majid H, Kao C. Utility of exhaled nitric oxide in the diagnosis and management of asthma. Curr Opin Pulm Med. 2010;16(1):42–47. doi:10.1097/MCP.0b013e328332ca46
  • Nguyen VN, Chavannes NH. Correlation between fractional exhaled nitric oxide and Asthma Control Test score and spirometry parameters in on-treatment- asthmatics in Ho Chi Minh City. J Thorac Dis. 2020;12(5):2197–2209. doi:10.21037/JTD.2020.04.01
  • Covar RA, Szefler SJ, Martin RJ, et al. Relations between exhaled nitric oxide and measures of disease activity among children with mild-to-moderate asthma. J Pediatr. 2003;142(5):469–475. doi:10.1067/mpd.2003.187
  • Taylor DR, Pijnenburg MW, Smith AD, Jongste JCD. Exhaled nitric oxide measurements: clinical application and interpretation. Thorax. 2006;61(9):817 LP–827 . doi:10.1136/thx.2005.056093
  • Pijnenburg MWH, De Jongste JC. Exhaled nitric oxide in childhood asthma: a review. Clin Exp Allergy. 2008;38(2):246–259. doi:10.1111/J.1365-2222.2007.02897.X
  • Payne DNR, Adcock IM, Wilson NM, Oates T, Scallan M, Bush A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med. 2012;164(8 I):1376–1381. doi:10.1164/AJRCCM.164.8.2101145
  • Ferrante G, Malizia V, Antona R, Corsello G, La Grutta S. The value of FeNO measurement in childhood asthma: uncertainties and perspectives. Multidiscip Respir Med. 2013;8(1):50. doi:10.1186/2049-6958-8-50
  • El-Seify MYH, Fouda EM, Nabih ES. Serum level of soluble receptor for advanced glycation end products in asthmatic children and its correlation to severity and pulmonary functions. Clin Lab. 2014;60(6):957–962. doi:10.7754/CLIN.LAB.2013.130418
  • Tereshchenko S, Smolnikova M, Belenjuk V, Novitsky I. Soluble receptor for advanced glycation end products (sRAGE) in asthmatic children as a new marker of the disease control. Eur Respir J. 2021;58(suppl 65):A3076. doi:10.1183/13993003.CONGRESS-2021.PA3076
  • Bui H, Keshawarz A, Hwang SJ, et al. A genomic approach identifies sRAGE as a putatively causal protein for asthma. J Allergy Clin Immunol. 2022;149(6):1992–1997.e12. doi:10.1016/j.jaci.2021.11.027
  • Perkins TN, Oczypok EA, Milutinovic PS, Dutz RE, Oury TD. RAGE-dependent VCAM-1 expression in the lung endothelium mediates IL-33-induced allergic airway inflammation. Allergy Eur J Allergy Clin Immunol. 2019;74(1):89–99. doi:10.1111/ALL.13500
  • Ullah MA, Loh Z, Gan WJ, et al. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol. 2014;134(2):440–450. doi:10.1016/j.jaci.2013.12.1035
  • Magnier J, Julian V, Sapin V, et al. Soluble Receptor of Advanced Glycation End-Products (sRAGE) in pediatric asthma: a prospective study in 68 children aged 7 years. Appl Sci. 2022;12(12):5926. doi:10.3390/APP12125926
  • Koyama H, Shoji T, Yokoyama H, et al. Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(12):2587–2593. doi:10.1161/01.ATV.0000190660.32863.CD
  • Watanabe T, Asai K, Fujimoto H, Tanaka H, Kanazawa H, Hirata K. Increased levels of HMGB-1 and endogenous secretory RAGE in induced sputum from asthmatic patients. Respir Med. 2011;105(4):519–525. doi:10.1016/j.rmed.2010.10.016