216
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Analysis of ceRNA Regulatory Mechanism of Rape Pollen Allergy Based on Whole-Transcriptome Sequencing of Peripheral Blood Mononuclear Cells

, ORCID Icon, , , , & show all
Pages 775-788 | Received 11 Apr 2023, Accepted 12 Jul 2023, Published online: 27 Jul 2023

References

  • Okubo K, Kurono Y, Ichimura K, et al. Japanese Society of Allergology. Japanese guidelines for allergic rhinitis 2020. Allergol Int. 2020;69(3):331. doi:10.1016/j.alit.2020.04.001
  • Cheng L, Chen J, Fu Q, et al. Chinese Society of Allergy Guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2018;10:312–313.
  • Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-coding RNAs in allergic disorders. Biomed Pharmacother. 2020;130:110615. doi:10.1016/j.biopha.2020.110615
  • Specjalski K, Jassem E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz). 2019;67(4):213–223. doi:10.1007/s00005-019-00547-4
  • Lemonnier N, Melén E, Jiang Y, et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 2020;75(12):3248–3260. doi:10.1111/all.14314
  • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–193. doi:10.1093/bioinformatics/19.2.185
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–915. doi:10.1038/s41587-019-0201-4
  • Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352
  • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi:10.1093/bioinformatics/btt656
  • Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8
  • Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016;44(D1):D231–8. doi:10.1093/nar/gkv1270
  • Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905. doi:10.1080/15476286.2019.1600395
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–d131. doi:10.1093/nar/gkz757
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523. doi:10.1038/s41467-019-09234-6
  • Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–530. doi:10.1093/bioinformatics/btt703
  • Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22.
  • Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. doi:10.1186/1471-2105-12-77
  • Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–d386. doi:10.1093/nar/gkx1013
  • Sheha D, El-Korashi L, AbdAllah AM, El Begermy MM, Elzoghby DM, Elmahdi A. Lipid Profile and IL-17A in Allergic Rhinitis: correlation With Disease Severity and Quality of Life. J Asthma Allergy. 2021;14:109–117. doi:10.2147/JAA.S290813
  • Ciprandi G, De Amici M, Murdaca G, et al. Serum interleukin-17 levels are related to clinical severity in allergic rhinitis. Allergy. 2009;64(9):1375–1378. doi:10.1111/j.1398-9995.2009.02010.x
  • Waldman SA, Murad F.Cyclic GMP synthesis and function. Pharmacol Rev. 1987;39(3):163–196.
  • Sakai H, Hara T, Todoroki K, et al. Elevated guanylate cyclase and cyclic-guanosine monophosphate-dependent protein kinase levels in nasal mucosae of antigen-challenged rats. Microvasc Res. 2013;90:150–153. doi:10.1016/j.mvr.2013.08.009
  • Stott JB, Jepps TA, Greenwood IA. K(V)7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today. 2014;19(4):413–424. doi:10.1016/j.drudis.2013.12.003
  • Brueggemann LI, Kakad PP, Love RB, et al. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy. Am J Physiol Lung Cell Mol Physiol. 2012;302(1):L120–32. doi:10.1152/ajplung.00194.2011
  • Rautenbach A, Williams AA. Metabolomics as an Approach to Characterise the Contrasting Roles of CCR5 in the Presence and Absence of Disease. Int J Mol Sci. 2020;21(4). doi:10.3390/ijms21041472
  • Marques RE, Guabiraba R, Russo RC, Teixeira MM. Targeting CCL5 in inflammation. Expert Opin Ther Targets. 2013;17(12):1439–1460. doi:10.1517/14728222.2013.837886
  • Nur Husna SM, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Allergic Rhinitis: a Clinical and Pathophysiological Overview. Front Med. 2022;9:874114. doi:10.3389/fmed.2022.874114
  • Gazon H, Barbeau B, Mesnard JM, Peloponese JM Jr. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol. 2017;8:2686. doi:10.3389/fmicb.2017.02686
  • Rachev E, Schuster-Gossler K, Fuhl F, et al. CFAP43 modulates ciliary beating in mouse and Xenopus. Dev Biol. 2020;459(2):109–125. doi:10.1016/j.ydbio.2019.12.010
  • Cheng S, Tang Q, Xie S, et al. The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm. 2022;2022:6125698. doi:10.1155/2022/6125698
  • Jia H, Zhang R, Liang X, Jiang X, Bu Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell Signal. 2022;99:110435. doi:10.1016/j.cellsig.2022.110435
  • Guo Z, Kong Q, Liu C, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307. doi:10.1038/ncomms10307
  • Ota K, Kawaguchi M, Matsukura S, et al. Potential involvement of IL-17F in asthma. J Immunol Res. 2014;2014:602846. doi:10.1155/2014/602846
  • Li YQ, Zhong Y, Xiao XP, et al. IL-33/ST2 axis promotes the inflammatory response of nasal mucosal epithelial cells through inducing the ERK1/2 pathway. Innate Immun. 2020;26(6):505–513. doi:10.1177/1753425920918911
  • Sun Y, Han J, Ma H, Ma J, Ren Z. Aberrant expression of long non-coding RNA PVT1 in allergic rhinitis children: correlation with disease risk, symptoms, and Th1/Th2 imbalance. J Clin Lab Anal. 2022;36(4):e24281. doi:10.1002/jcla.24281
  • Tirado-Rodriguez B, Ortega E, Segura-Medina P, et al. TGF-b: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res. 2014;2014:318481.
  • Zhu XJ, Lu MP, Chen RX, et al. Polymorphism -509C/T in TGFB1 Promoter Is Associated With Increased Risk and Severity of Persistent Allergic Rhinitis in a Chinese Population. Am J Rhinol Allergy. 2020;34(5):597–603. doi:10.1177/1945892420913441
  • Ouyang Y, Nakao A, Han D, Zhang L. Transforming growth factor-β1 promotes nasal mucosal mast cell chemotaxis in murine experimental allergic rhinitis. ORL J Otorhinolaryngol Relat Spec. 2012;74(3):117–123. doi:10.1159/000328587
  • Salib RJ, Kumar S, Wilson SJ, Howarth PH. Nasal mucosal immunoexpression of the mast cell chemoattractants TGF-beta, eotaxin, and stem cell factor and their receptors in allergic rhinitis. J Allergy Clin Immunol. 2004;114(4):799–806. doi:10.1016/j.jaci.2004.07.010