120
Views
12
CrossRef citations to date
0
Altmetric
Review

Evaluating ibrutinib in the treatment of symptomatic Waldenstrom’s macroglobulinemia

, , , &
Pages 291-300 | Published online: 27 Aug 2019

References

  • Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):110–115. doi:10.1053/sonc.2003.5008212720118
  • Leblond V, Kastritis E, Advani R, et al. Treatment recommendations from the Eighth International Workshop on Waldenstrom’s Macroglobulinemia. Blood. 2016;128(10):1321–1328. doi:10.1182/blood-2016-04-71123427432877
  • Buske C, Seymour JF. Immunochemotherapy in Waldenstrom macroglobulinemia - still the backbone of treatment. Leuk Lymphoma. 2015;56(9):2489–2490. doi:10.3109/10428194.2015.105893826054374
  • Gavriatopoulou M, Ntanasis-Stathopoulos I, Kastritis E, Dimopoulos MA. How I treat rituximab refractory patients with WM. Oncotarget. 2018;9(96):36824–36825. doi:10.18632/oncotarget.2641130627320
  • Castillo JJ, Kanan S, Meid K, Manning R, Hunter ZR, Treon SP. Rituximab intolerance in patients with Waldenstrom macroglobulinaemia. Br J Haematol. 2016;174(4):645–648. doi:10.1111/bjh.1379426523929
  • FDA expands approved use of Imbruvica for rare form of non-Hodgkin lymphoma: first drug approved to treat Waldenström’s macroglobulinemia. [press release]. 2015.
  • Charalambous A, Schwarzbich MA, Witzens-Harig M. Ibrutinib. Recent results in cancer research. 2018;212:133–168. doi:10.1007/978-3-319-91439-8_730069629
  • Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92. doi:10.1038/nature0863820054396
  • Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118(16):4313–4320. doi:10.1182/blood-2011-06-33885521816833
  • Sideras P, Muller S, Shiels H, et al. Genomic organization of mouse and human Bruton’s agammaglobulinemia tyrosine kinase (Btk) loci. J Immunol. 1994;153(12):5607–5617.7989760
  • Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94(3):193–205. doi:10.1111/ejh.1242725080849
  • Satterthwaite AB, Witte ON. The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev. 2000;175:120–127.10933597
  • Imbruvica (ibrutinib) Capsules [prescribing Information]. Sunnyvale, CA: Pharmacyclics, Inc; 3 2016.
  • Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–833. doi:10.1056/NEJMoa120071022931316
  • Watters TM, Kenny EF, O’Neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol. 2007;85(6):411–419. doi:10.1038/sj.icb.710009517667936
  • Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885–890. doi:10.1038/nature0912120485341
  • Leleu X, Eeckhoute J, Jia X, et al. Targeting NF-kappaB in Waldenstrom macroglobulinemia. Blood. 2008;111(10):5068–5077. doi:10.1182/blood-2007-09-11517018334673
  • Shinners NP, Carlesso G, Castro I, et al. Bruton’s tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J Immunol. 2007;179(6):3872–3880. doi:10.4049/jimmunol.179.6.387217785824
  • Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013;122(7):1222–1232. doi:10.1182/blood-2012-12-47511123836557
  • Chen JG, Liu X, Munshi M, et al. BTK(Cys481Ser) drives ibrutinib resistance via ERK1/2 and protects BTK(wild-type) MYD88-mutated cells by a paracrine mechanism. Blood. 2018;131(18):2047–2059. doi:10.1182/blood-2017-10-81175229496671
  • Yang G, Buhrlage SJ, Tan L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127(25):3237–3252. doi:10.1182/blood-2016-01-69509827143257
  • Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–1646. doi:10.1182/blood-2013-09-52580824366360
  • Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem. 2010;285(10):7805–7817. doi:10.1074/jbc.M109.09117320048153
  • Dotta L, Tassone L, Badolato R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med. 2011;11(4):317–325.21506920
  • Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123(26):4120–4131. doi:10.1182/blood-2014-03-56458324711662
  • Xu L, Hunter ZR, Tsakmaklis N, et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenstrom Macroglobulinaemia. Br J Haematol. 2016;172(5):735–744. doi:10.1111/bjh.1389726659815
  • Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–2796. doi:10.1182/blood-2014-01-55090524553177
  • Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta. 2007;1768(4):952–963. doi:10.1016/j.bbamem.2006.11.00217169327
  • Cao Y, Hunter ZR, Liu X, et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;168(5):701–707. doi:10.1111/bjh.1320025371371
  • Cao Y, Hunter ZR, Liu X, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s Macroglobulinemia. Leukemia. 2015;29(1):169–176. doi:10.1038/leu.2014.18724912431
  • Martin P, Maddocks K, Leonard JP, et al. Postibrutinib outcomes in patients with mantle cell lymphoma. Blood. 2016;127(12):1559–1563. doi:10.1182/blood-2015-10-67314526764355
  • Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood. 2017;129(18):2519–2525. doi:10.1182/blood-2017-01-76172628235842
  • Paulus A, Akhtar S, Yousaf H, et al. Waldenstrom macroglobulinemia cells devoid of BTK(C481S) or CXCR4(WHIM-like) mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 2017;7(5):e565. doi:10.1038/bcj.2017.4028548645
  • Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi:10.1200/JCO.2012.42.790623045577
  • Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–1440. doi:10.1056/NEJMoa150154825853747
  • Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–250. doi:10.1016/S1470-2045(16)30632-527956157
  • Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenstrom’s macroglobulinemia. N Engl J Med. 2018;378(25):2399–2410. doi:10.1056/NEJMoa180291729856685
  • Karlin L, Besson H, Tapprich C, Garside J, Salles G. Efficacy of Ibrutinib-Rituximab versus Real-World (RW) treatments for patients with Waldenström’s Macroglobulinemia (WM): adjusted comparison of iNNOVATE and the Lyon-Sud RW database. Blood. 2018;132(Suppl 1):1604. doi:10.1182/blood-2018-04-84802830108064
  • Treon SP, Gustine J, Meid K, et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients with Waldenstrom macroglobulinemia. J Clin Oncol. 2018;36(27):2755–2761. doi:10.1200/JCO.2018.78.642630044692
  • Buske C, Tedeschi A, Trotman J, et al. Ibrutinib treatment in Waldenström’s Macroglobulinemia: follow-up efficacy and safety from the iNNOVATETM study. Blood. 2018;132(Suppl 1):149.
  • de Zwart L, Snoeys J, De Jong J, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on interaction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther. 2016;100(5):548–557. doi:10.1002/cpt.41927367453
  • de Weerdt I, Koopmans SM, Kater AP, van Gelder M. Incidence and management of toxicity associated with ibrutinib and idelalisib: a practical approach. Haematologica. 2017;102(10):1629–1639. doi:10.3324/haematol.2017.16410328775119
  • Yun S, Vincelette ND, Acharya U, Abraham I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin Lymphoma Myeloma Leuk. 2017;17(1):31–37 e13. doi:10.1016/j.clml.2016.09.01027780690
  • Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib inhibits platelet integrin alphaiibbeta3 outside-in signaling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol. 2015;35(11):2326–2335. doi:10.1161/ATVBAHA.115.30613026359510
  • Thorp BC, Badoux X. Atrial fibrillation as a complication of ibrutinib therapy: clinical features and challenges of management. Leuk Lymphoma. 2018;59(2):311–320. doi:10.1080/10428194.2017.133987428629235
  • McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–3830. doi:10.1182/blood-2014-10-60427225498454
  • Gustine JN, Meid K, Dubeau TE, Treon SP, Castillo JJ. Atrial fibrillation associated with ibrutinib in Waldenstrom macroglobulinemia. Am J Hematol. 2016;91(6):E312–E313. doi:10.1002/ajh.2436626994323
  • Castillo JJ, Gustine JN, Meid K, Dubeau T, Severns P, Treon SP. Ibrutinib withdrawal symptoms in patients with Waldenstrom macroglobulinemia. Haematologica. 2018;103(7):e307–e310. doi:10.3324/haematol.2017.18690829472352
  • Niemann CU, Herman SE, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib–findings from an investigator-initiated Phase II study. Clin Cancer Res. 2016;22(7):1572–1582. doi:10.1158/1078-0432.CCR-15-196526660519
  • Ping L, Ding N, Shi Y, et al. The Bruton’s tyrosine kinase inhibitor ibrutinib exerts immunomodulatory effects through regulation of tumor-infiltrating macrophages. Oncotarget. 2017;8(24):39218–39229. doi:10.18632/oncotarget.1683628424405
  • Ren L, Campbell A, Fang H, et al. Analysis of the effects of the Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib on monocyte Fcgamma Receptor (FcgammaR) function. J Biol Chem. 2016;291(6):3043–3052. doi:10.1074/jbc.M115.68725126627823
  • Gustine JN, Meid K, Dubeau T, et al. Ibrutinib discontinuation in Waldenstrom macroglobulinemia: etiologies, outcomes, and IgM rebound. Am J Hematol. 2018;93(4):511–517. doi:10.1002/ajh.2502329280186
  • Castillo JJ, Gustine JN, Meid K, et al. Impact of ibrutinib dose intensity on patient outcomes in previously treated Waldenstrom macroglobulinemia. Haematologica. 2018;103(10):e466–e468. doi:10.3324/haematol.2018.19199929773590
  • Tam CS, LeBlond V, Novotny W, et al. A head-to-head Phase III study comparing zanubrutinib versus ibrutinib in patients with Waldenstrom macroglobulinemia. Future Oncol. 2018;14(22):2229–2237. doi:10.2217/fon-2018-016329869556
  • Trotman J, Opat S, Marlton P, et al. Bruton’s Tyrosine Kinase (BTK) inhibitor BGB-3111 demonstrates high very good partial response (VGPR) rate in patients with Waldenström macroglobulinemia (WM). Hematol Oncol. 2017;35(S2):70–71. doi:10.1002/hon.240428591420
  • Harrington BK, Gulrajani M, Covey T, et al. ACP-196 is a second generation inhibitor of bruton tyrosine Kinase (BTK) with enhanced target specificity. Blood. 2015;126(23):2908.
  • Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–332. doi:10.1056/NEJMoa150998126641137
  • Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–667. doi:10.1016/S0140-6736(17)33108-229241979
  • Owen R, McCarthy H, Rule S, et al. Acalabrutinib in Patients (pts) with Waldenström Macroglobulinemia (WM) ASCO 2018 Abstract 7501.
  • Neuman LL, Ward R, Arnold D, et al. First-in-human Phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of the noncovalent Bruton Tyrosine Kinase (BTK) inhibitor SNS-062 in healthy subjects. Blood. 2016;128(22):2032.