130
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Influence of α2-Macroglobulin, Anti-Parasite IgM and ABO Blood Group on Rosetting in Plasmodium falciparum Clinical Isolates and Their Associations with Disease Severity in a Ghanaian Population

, ORCID Icon, , ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 151-164 | Published online: 18 Mar 2022

References

  • World Health Organization. Global trends in the burden of Malaria; 2020.
  • Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C. Mosquito vectors and the globalization of Plasmodium falciparum Malaria. Annu Rev Genet. 2016;50(1):447–465. doi:10.1146/annurev-genet-120215-035211
  • Rasti N, Wahlgren M, Chen Q. Molecular aspects of malaria pathogenesis. FEMS Immunol Med Microbiol. 2004;41(1):9–26. doi:10.1016/j.femsim.2004.01.010
  • Kirchgatter K, Del Portillo HA. Clinical and molecular aspects of severe malaria. An Acad Bras Cienc. 2005;77(3):455–475. doi:10.1590/s0001-37652005000300008
  • Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511. doi:10.1038/nature01097
  • Petter M, Haeggström M, Khattab A, et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol. 2007;156(1):51–61. doi:10.1016/j.molbiopara.2007.07.011
  • Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15(8):479–491. doi:10.1038/nrmicro.2017.47
  • Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. J Immunol Res. 2018;2018:1–6. doi:10.1155/2018/6529681
  • Hviid L, Jensen ATR. PfEMP1 - a Parasite Protein Family of Key Importance in Plasmodium Falciparum Malaria Immunity and Pathogenesis. Vol. 88. Elsevier Ltd; 2015. doi:10.1016/bs.apar.2015.02.004
  • Blomqvist K, Normark J, Nilsson D, et al. var gene transcription dynamics in Plasmodium falciparum patient isolates. Mol Biochem Parasitol. 2010;170(2):74–83. doi:10.1016/j.molbiopara.2009.12.002
  • Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci. 2014;71(19):3633–3657. doi:10.1007/s00018-014-1614-3
  • Yam XY, Niang M, Madnani KG, Preiser PR. Three is a crowd – new insights into rosetting in Plasmodium falciparum. Trends Parasitol. 2017;33(4):309–320. doi:10.1016/j.pt.2016.12.012
  • Doumbo OK, Thera MA, Koné AK, et al. High levels of Plasmodium falciparum rosetting in all clinical forms of severe malaria in African children. Am J Trop Med Hyg. 2009;81(6):987–993. doi:10.4269/ajtmh.2009.09-0406
  • Mercereau-Puijalon O, Guillotte M, Vigan-Womas I. Rosetting in Plasmodium falciparum: a cytoadherence phenotype with multiple actors. Transfus Clin Biol. 2008;15(1–2):62–71. doi:10.1016/j.tracli.2008.04.003
  • Rowe JA, Shafi J, Kai OK, Marsh K, Raza A. Nonimmune IgM but not IgG binds to the surface of Plasmodium falciparum-infected erythrocytes and correlates with rosetting and severe malaria. Am J Trop Med Hyg. 2002;66(6):692–699. doi:10.4269/ajtmh.2002.66.692
  • Stevenson L, Laursen E, Cowan GJ, et al. α2-macroglobulin can crosslink multiple plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes. PLoS Pathog. 2015;11(7):1–19. doi:10.1371/journal.ppat.1005022
  • Rout R, Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit M. High CR1 level and related polymorphic variants are associated with cerebral malaria in eastern-India. Infect Genet Evol. 2011;11(1):139–144. doi:10.1016/j.meegid.2010.09.009
  • Panda AK, Panda M, Tripathy R, Pattanaik SS, Ravindran B, Das BK. Complement Receptor 1 variants confer protection from severe Malaria in Odisha, India. PLoS One. 2012;7(11):e49420. doi:10.1371/journal.pone.0049420
  • Zimmerman PA, Ferreira MU, Howes RE, Mercereau-Puijalon O. Red Blood Cell Polymorphism and Susceptibility to Plasmodium Vivax. Vol. 81. Elsevier; 2013. doi:10.1016/B978-0-12-407826-0.00002-3
  • Stevenson L, Huda P, Jeppesen A, et al. Investigating the function of Fc-specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting. Cell Microbiol. 2015;17(6):819–831. doi:10.1111/cmi.12403
  • Moll K, Palmkvist M, Ch’ng J, Kiwuwa MS, Wahlgren M. Evasion of immunity to Plasmodium falciparum: rosettes of blood group a impair recognition of PfEMP1. PLoS One. 2015;10(12):1–18. doi:10.1371/journal.pone.0145120
  • Heddini A, Treutiger CJ, Wahlgren M. Enrichment of immunoglobulin binding Plasmodium falciparum-infected erythrocytes using anti-immunoglobulin-coated magnetic beads. Am J Trop Med Hyg. 1998;59(5):663–666. doi:10.4269/ajtmh.1998.59.663
  • Somner EA, Black J, Pasvol G. Multiple human serum components act as bridging molecules in rosette formation by Plasmodium falciparum-infected erythrocytes. Blood. 2000;95(2):674–682. doi:10.1182/blood.v95.2.674
  • Akhouri RR, Goel S, Furusho H, Skoglund U, Wahlgren M. Architecture of human IgM in complex with P. falciparum erythrocyte membrane Protein 1. Cell Rep. 2016;14(4):723–736. doi:10.1016/j.celrep.2015.12.067
  • Perez L, Perez ML, Van Der Puije W, Castberg FC, Ofori MF, Hviid L. Binding of human serum proteins to Plasmodium falciparum ‑ infected erythrocytes and its association with malaria clinical presentation. Malar J. 2020;19:1–9. doi:10.1186/s12936-020-03438-8
  • Atanasova E, Martinova F, Jelev D, et al. Alpha-2 macroglobulin is the simplest serum biomarker for liver fibrosis and fibrogenesis in chronic Hepatitis C. J Med Dent Pract. 2015;2(2):153–164. doi:10.18044/medinform.201522.153
  • Rehman AA, Ahsan H, Khan FH. Alpha-2-macroglobulin: a physiological guardian. J Cell Physiol. 2013;228(8):1665–1675. doi:10.1002/jcp.24266
  • Lindner I, Hemdan NYA, Buchold M, et al. Α2-macroglobulin inhibits the malignant properties of astrocytoma cells by impeding Β-Catenin signaling. Cancer Res. 2010;70(1):277–287. doi:10.1158/0008-5472.CAN-09-1462
  • Mujahid A, Dickert FL. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting. Sensors. 2016;16(1). doi:10.3390/s16010051
  • Chotivanich KT, Udomsangpetch R, Pipitaporn B, et al. Rosetting characteristics of uninfected erythrocytes from healthy individuals and malaria patients. Ann Trop Med Parasitol. 1998;92(1):45–56. doi:10.1080/00034989860166
  • Kaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991;78(3):812–819. doi:10.1182/blood.v78.3.812.bloodjournal783812
  • Barragan A, Kremsner PG, Weiss W, Wahlgren M, Carlson J. Age-related buildup of humoral immunity against epitopes for rosette formation and agglutination in African areas of malaria endemicity. Infect Immun. 1998;66(10):4783–4787. doi:10.1128/iai.66.10.4783-4787.1998
  • Adams Y, Rowe JA, Craig AG. The effect of anti-rosetting agents against malaria parasites under physiological flow conditions. PLoS One. 2013;8(9):e73999. doi:10.1371/journal.pone.0073999
  • Quintana P, Ch J, Moll K, Zandian A, Nilsson P. Antibodies in children with malaria to PfEMP1, RIFIN and SURFIN expressed at the Plasmodium falciparum parasitized red blood cell surface. Sci Rep. 2018:1–14. DOI:10.1038/s41598-018-21026-4
  • Horata N, Kalambaheti T, Craig A, Khusmith S. Sequence variation of PfEMP1-DBL α in association with rosette formation in Plasmodium falciparum isolates causing severe and uncomplicated malaria. Malar J. 2009;8(1):1–11. doi:10.1186/1475-2875-8-184
  • Bachmann A, Scholz J, Janßen M, et al. Evidence of promiscuous endothelial binding by Plasmodium falciparum-infected erythrocytes. Cell Microbiol. 2014;11(3):1–14. doi:10.1016/j.molbiopara.2014.07.006.The
  • Mcquaid F, Rowe JA, Rowe JA, Mcquaid F, Rowe JA. Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology. 2020;147(1):1–11. doi:10.1017/S0031182019001288
  • Jötten AM, Moll K, Wahlgren M, Wixforth A, Westerhausen C. Blood group and size dependent stability of P. falciparum infected red blood cell aggregates in capillaries. Biomicrofluidics. 2020;14(2):1–10. doi:10.1063/1.5125038
  • Vigan-Womas I, Guillotte M, Juillerat A, et al. Structural basis for the ABO blood-group dependence of plasmodium falciparum rosetting. PLoS Pathog. 2012;8(7):33. doi:10.1371/journal.ppat.1002781
  • Heddini A, Pettersson F, Kai O, et al. Fresh isolates from children with severe plasmodium falciparum malaria bind to multiple receptors. Infect Immunity. 2001;69(9):5849–5856. doi:10.1128/IAI.69.9.5849
  • Marsh K, Rowe JA, Obiero J, Marsh K, Raza A. Short report: positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am J Trop Med Hyg. 2002;66:3–6. doi:10.4269/ajtmh.2002.66.458
  • Treutiger CJ, Scholander C, Carlson J, et al. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes. Exp Parasitol. 1999;93(4):215–224. doi:10.1006/expr.1999.4454
  • Lehman LG, Vu-Quoc B, Carlson J, Kremsner PG. Plasmodium falciparum: inhibition of erythrocyte rosette formation and detachment of rosettes by pentoxifylline. Trans R Soc Trop Med Hyg. 1997;91(1):74–75. doi:10.1016/S0035-9203(97)90402-8
  • Rout R, Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit M. Genetic diversity of PfEMP1-DBL 1-α and its association with severe malaria in a hyperendemic state of India. Asian Pac J Trop Med. 2010;3(7):505–509. doi:10.1016/S1995-7645(10)60122-8
  • Chen Q, Barragan A, Fernandez V, et al. Identification of Plasmodium falciparum erythrocyte membrane protein I (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187(1):15–23. doi:10.1084/jem.187.1.15
  • Rovira-Vallbona E, Moncunill G, Bassat Q, et al. Low antibodies against Plasmodium falciparum and imbalanced pro-inflammatory cytokines are associated with severe malaria in Mozambican children: a case-control study. Malar J. 2012;11:1–11. doi:10.1186/1475-2875-11-181
  • Couper KN, Phillips RS, Brombacher F, Alexander J. Parasite-specific IgM plays a significant role in the protective immune response to asexual erythrocytic stage Plasmodium chabaudi AS infection. Parasite Immunol. 2005;27(5):171–180. doi:10.1111/j.1365-3024.2005.00760.x
  • Czajkowsky DM, Salanti A, Ditlev SB, et al. IgM, FcμRs, and malarial immune evasion. J Immunol. 2010;184(9):4597–4603. doi:10.4049/jimmunol.1000203
  • Pied S, Nosten F, Nosten F, Nosten F, Nosten F, Mazier D. Materials and methods. Parasite. 1995;2(3):263–268. doi:10.1051/parasite/1995023263
  • Medrano NM, Luz MRMP, Cabello PH, Tapia GT, Van Leuven F, Araújo-Jorge TC. Acute Chagas’ disease: plasma levels of alpha-2-macroglobulin and C-reactive protein in children under 13 years in a high endemic area of Bolivia. J Trop Pediatr. 1996;42(2):68–74. doi:10.1093/tropej/42.2.68
  • Bapat PR, Satav AR, Husain AA, et al. Differential levels of Alpha-2-macroglobulin, haptoglobin and sero-transferrin as adjunct markers for TB diagnosis and disease progression in the malnourished tribal population of Melghat, India. PLoS One. 2015;10:1–17. doi:10.1371/journal.pone.0133928