163
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparison of Washing Efficiency and Recovery of Blood Cells Between Centrifugation, Coarse Filtration and Microfiltration Techniques to Prepare Autologous Blood for Transfusion

, , , ORCID Icon & ORCID Icon
Pages 549-558 | Received 04 Apr 2022, Accepted 16 Sep 2022, Published online: 30 Sep 2022

References

  • Roberts N, James S, Delaney M, Fitzmaurice C. The global need and availability of blood products: a modelling study. Lancet Haematol. 2019;6(12):e606–e615. doi:10.1016/S2352-3026(19)30200-5
  • World Health Organization (WHO). Global Status Report on Blood Safety and Availability 2016. Geneva: World Health Organization; 2017.
  • Stanworth SJ, Hv. N, Apelseth TO, et al. Effects of the COVID-19 pandemic on supply and use of blood for transfusion. Lancet Haematol. 2020;7(10):e756–e764. doi:10.1016/S2352-3026(20)30186-1
  • Fisher T, Winget C, Sienko K. Autologous blood transfusion device for use in resource limited settings final report; 2010:1–96.
  • Davies L, Brown TJ, Haynes S, Payne K, Elliott RA, McCollum C. Cost-effectiveness of cell salvage and alternative methods of minimising perioperative allogeneic blood transfusion: a systematic review and economic model. Health Technol Assess. 2006;10(44):iii-iv-ix-x-1–210.
  • Zhou J. A review of the application of autologous blood transfusion. Brazilian J Med Biol Res. 2016;49(9). doi:10.1590/1414-431x20165493
  • Sikorski RA, Rizkalla NA, Yang WW, Frank SM. Autologous blood salvage in the era of patient blood management. Vox Sang. 2017;112(6):499–510. doi:10.1111/vox.12527
  • Lu M, Lezzar DL, Vörös E, Shevkoplyas SS. Traditional and emerging technologies for washing and volume reducing blood products. J Blood Med. 2019;10:37–46. doi:10.2147/JBM.S166316
  • Osemwengie D, Lagerberg JW, Richard V, et al. Recovery of platelet-rich red blood cells and acquisition of convalescent plasma with a novel gravity-driven blood separation device. Transfus Med. 2021. doi:10.1111/TME.12830
  • Hemafuse website. Available from: https://sisuglobal.health/. Accessed August 4, 2021.
  • HemoClear website. Product HemoClear Autologous Red Blood Cell Filter. Available from: https://hemoclear.com/product/. Accessed August 4, 2021.
  • Pietersz RNI, de Korte D, Reesink HW, Dekker WJA, van den Ende A, Loos JA. Storage of whole blood for up to 24 hours at ambient temperature prior to component preparation. Vox Sang. 1989;56(3):145–150. doi:10.1111/j.1423-0410.1989.tb02017.x
  • Fung MK, Grossman BJ, Hillyer CD, Westhoff CM. Technical Manual. 18 ed. AABB; 2014.
  • Duck FA. Physical Properties of Tissues: A Comprehensive Reference Book. Academic press; 2013.
  • De Korte D, Kleine M, Korsten HGH, Verhoeven AJ. Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage. Transfusion. 2008;48(6):1081–1089. doi:10.1111/j.1537-2995.2008.01689.x
  • Bontekoe IJ, van der Meer PF, de Korte D. Thromboelastography as a tool to evaluate blood of healthy volunteers and blood component quality: a review. Vox Sang. 2019;114(7):643–657. doi:10.1111/vox.12823
  • Selby R. ‘TEG talk’: expanding clinical roles for thromboelastography and rotational thromboelastometry. Hematology. 2020;2020(1):67. doi:10.1182/hematology.2020000090
  • Klein AA, Bailey CR, Charlton AJ, et al. Association of Anaesthetists guidelines: cell salvage for peri-operative blood conservation 2018. Anaesthesia. 2018;73(9):1141–1150. doi:10.1111/anae.14331
  • Nitescu N, Bengtsson A, Bengtson JP. Blood salvage with a continuous autotransfusion system compared with a haemofiltration system. Perfusion. 2002;17:357–362. doi:10.1191/0267659102pf603oa
  • Lindau S, Kohlhaas M, Nosch M, Choorapoikayil S, Zacharowski K, Meybohm P. Cell salvage using the continuous autotransfusion device CATSmart - An observational bicenter technical evaluation. BMC Anesthesiol. 2018;18(1). doi:10.1186/s12871-018-0651-0
  • Perelman I, Khair S, Dermer E, Tinmouth A, Saidenberg E, Fergusson D. The epidemiology of multicomponent blood transfusion: a systematic review. Transfus Med. 2019;29(2):80–94. doi:10.1111/tme.12584
  • Kogler VJ, Stolla M. There and back again: the once and current developments in donor-derived platelet products for hemostatic therapy. Blood. 2022;139(26):3688–3698.
  • Riley W, Smalley B, Pulkrabek S, Clay ME, McCullough J. Using lean techniques to define the platelet (PLT) transfusion process and cost-effectiveness to evaluate PLT dose transfusion strategies. Transfusion. 2012;52:1957–1967. doi:10.1111/j.1537-2995.2011.03539.x
  • Fuller AK, Uglik KM, Braine HG, King KE. A comprehensive program to minimize platelet outdating. Transfusion. 2011;51:1469–1476. doi:10.1111/j.1537-2995.2010.03039.x
  • Scholz M, Serrick C, Noel D, Singh O, Melo M. A prospective comparison of the platelet sequestration ability of three autotransfusion devices. J Extra Corpor Technol. 2005;37(3):286–289.
  • Osaro E, Charles AT. The challenges of meeting the blood transfusion requirements in Sub-Saharan Africa: the need for the development of alternatives to allogenic blood. J Blood Med. 2011;2:7–21. doi:10.2147/JBM.S17194
  • Hoetink A, Scherphof SF, Mooi FJ, et al. An in vitro pilot study comparing the novel hemoclear gravity-driven microfiltration cell salvage system with the conventional centrifugal XTRATM autotransfusion device. Anesthesiol Res Pract. 2020. doi:10.1155/2020/9584186
  • Harm SK, Raval JS, Cramer J, Waters JH, Yazer MH. Haemolysis and sublethal injury of RBCs after routine blood bank manipulations. Transfus Med. 2012;22(3):181–185. doi:10.1111/j.1365-3148.2011.01127.x
  • O’Leary MF, Szklarski P, Klein TM, Young PP. Hemolysis of red blood cells after cell washing with different automated technologies: clinical implications in a neonatal cardiac surgery population. Transfusion. 2011;51(5):955–960. doi:10.1111/j.1537-2995.2010.02935.x