334
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Gene Therapy and Hemophilia: Where Do We Go from Here?

, , , , & ORCID Icon
Pages 559-580 | Received 26 May 2022, Accepted 22 Sep 2022, Published online: 06 Oct 2022

References

  • Konkle BA, Huston H, Nakaya Fletcher S, et al. Hemophilia A. In: Adam MP, Ardinger HH, Pagon RA, editors. Genereviews(R). Seattle WA: University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle; 1993.
  • Konkle BA, Huston H, Nakaya Fletcher S, et al. Hemophilia B. In: Adam MP, Ardinger HH, Pagon RA, editors. Genereviews(R). Seattle WA: University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle; 1993.
  • Hay CRM, Nissen F, Pipe SW. Mortality in congenital hemophilia A - A systematic literature review. J Thrombosis Haemostasis. 2021;19(Suppl1):6–20. doi:10.1111/jth.15189
  • Darby SC, Kan SW, Spooner RJ, et al. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood. 2007;110(3):815–825. doi:10.1182/blood-2006-10-050435
  • Srivastava A, Santagostino E, Dougall A, et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia. 2020;26(Suppl 6):1–158. doi:10.1111/hae.14046
  • World Federation of Hemophilia. The report on the WFH annual global survey 2020; 2021. Available from: https://www1.wfh.org/publications/files/pdf-2045.pdf. Accessed September 22, 2022.
  • Stonebraker JS, Bolton-Maggs PH, Soucie JM, Walker I, Brooker M. A study of variations in the reported haemophilia A prevalence around the world. Haemophilia. 2010;16(1):20–32. doi:10.1111/j.1365-2516.2009.02127.x
  • Stonebraker JS, Bolton-Maggs PH, Michael Soucie J, Walker I, Brooker M. A study of variations in the reported haemophilia B prevalence around the world. Haemophilia. 2012;18(3):e91–94. doi:10.1111/j.1365-2516.2011.02588.x
  • Nathwani AC. Gene therapy for hemophilia. Hematol Am Soc Hematol Educ Program. 2019;2019(1):1–8. doi:10.1182/hematology.2019000007
  • NIH U.S. National Library of Medicine; 2022. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/. Accessed April 25, 2022.
  • Manno CS, Chew AJ, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101(8):2963–2972. doi:10.1182/blood-2002-10-3296
  • Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther. 2006;14(3):452–455. doi:10.1016/j.ymthe.2006.05.004
  • Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–347. doi:10.1038/nm1358
  • George LA, Ragni MV, Rasko JEJ, et al. Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol Ther. 2020;28(9):2073–2082. doi:10.1016/j.ymthe.2020.06.001
  • Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–2365. doi:10.1056/NEJMoa1108046
  • Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. doi:10.1056/NEJMoa1407309
  • Nathwani AC, Reiss UM, Tuddenham EG, et al. Adeno-associated mediated gene transfer for hemophilia B: 8 year follow up and impact of removing “empty viral particles” on safety and efficacy of gene transfer [abstract]. Blood. 2018;132:491. doi:10.1182/blood-2018-99-118334
  • Leebeek FWG, Miesbach W. Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues. Blood. 2021;138(11):923–931. doi:10.1182/blood.2019003777
  • Miesbach W, Meijer K, Coppens M, et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood. 2018;131(9):1022–1031. doi:10.1182/blood-2017-09-804419
  • Miesbach W, Meijer K, Coppens M, et al. Five year data confirms stable FIX expression and sustained reductions in bleeding and factor IX use following AMT-060 gene therapy in adults with severe or moderate-severe hemophilia B [abstract]. Res Pract Thrombosis Haemostasis. 2021;5:90.
  • Von Drygalski A, Giermasz A, Castaman G, et al. Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv. 2019;3(21):3241–3247. doi:10.1182/bloodadvances.2019000811
  • Miesbach W, Leebeek FWG, Recht M, et al. Final analysis from the pivotal phase 3 Hope-B gene therapy trial: stable steady-state efficacy and safety of etranacogene dezaparvovec in adults with severe or moderately severe hemophilia B [abstract]. Haemophilia. 2022;28:99–100.
  • George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017;377(23):2215–2227. doi:10.1056/NEJMoa1708538
  • George LA, Sullivan SK, Rasko JEJ, et al. Efficacy and safety in 15 hemophilia B patients treated with the AAV gene therapy vector fidanacogene elaparvovec and followed for at least 1 year [abstract]. Blood. 2019;134:3347. doi:10.1182/blood-2019-124091
  • Chowdary P, Shapiro S, Makris M, et al. Phase 1–2 trial of AAVS3 gene therapy in patients with hemophilia B. N Engl J Med. 2022;387(3):237–247. doi:10.1056/NEJMoa2119913
  • Konkle BA, Walsh CE, Escobar MA, et al. BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood. 2021;137(6):763–774. doi:10.1182/blood.2019004625
  • Calcedo R, Kuri-Cervantes L, Peng H, et al. Immune responses in 101HEMB01, a phase 1/2 open-label, single ascending dose-finding trial of DTX101 (AAVrh10FIX) in patients with severe hemophilia B [abstract]. Blood. 2017;130:3333.
  • Pipe SW, Gonen-Yaacovi G, Segurado OG. Hemophilia A gene therapy: current and next-generation approaches. Expert Opin Biol Ther. 2022;2022:1–17.
  • Ozelo MC, Mahlangu J, Pasi KJ, et al. Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A. N Engl J Med. 2022;386(11):1013–1025. doi:10.1056/NEJMoa2113708
  • Rangarajan S, Walsh L, Lester W, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017;377(26):2519–2530. doi:10.1056/NEJMoa1708483
  • Pasi KJ, Rangarajan S, Mitchell N, et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N Engl J Med. 2020;382(1):29–40. doi:10.1056/NEJMoa1908490
  • Pasi KJ, Laffan M, Rangarajan S, et al. Persistence of haemostatic response following gene therapy with valoctocogene roxaparvovec in severe haemophilia A. Haemophilia. 2021;27(6):947–956. doi:10.1111/hae.14391
  • Arruda VR. Why is AAV FVIII gene therapy not approved by the US Food and Drug Administration yet? Blood Adv. 2021;5(20):4313. doi:10.1182/bloodadvances.2021004760
  • Fong S, Yates B, Sihn CR, et al. Interindividual variability in transgene mRNA and protein production following adeno-associated virus gene therapy for hemophilia A. Nat Med. 2022;28(4):789–797. doi:10.1038/s41591-022-01751-0
  • George LA, Monahan PE, Eyster ME, et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N Engl J Med. 2021;385(21):1961–1973. doi:10.1056/NEJMoa2104205
  • Sullivan SK, Barrett JC, Drelich DA, et al. SPK-8016: preliminary results from a phase 1/2 clinical trial of gene therapy for hemophilia A [abstract]. Haemophilia. 2021;27:129. doi:10.1111/hae.14190
  • Vishweshwar N, Harrington TJ, Leavitt AD, et al. Updated results of the Alta study, a phase 1/2 study of giroctocogene fitelparvovec (PF-07055480/SB-525) gene therapy in adults with severe hemophilia A [abstract]. Blood. 2021;138:564. doi:10.1182/blood-2021-148651
  • Pipe SW, Hay C, Sheehan J, et al. Evolution of AAV vector gene therapy is ongoing in hemophilia. Will the unique features of BAY 2599023 address the outstanding needs? [abstract]. Res Pract Thrombosis Haemostasis. 2021;5:1–7.
  • Nathwani AC, Tuddenham EG, Chowdary P, et al. GO-8: preliminary results of a Phase I/II dose escalation trial of gene therapy for haemophlia A using a novel human factor VIII variant [abstract]. Blood. 2018;132:489. doi:10.1182/blood-2018-99-118256
  • Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28(3):723–746. doi:10.1016/j.ymthe.2019.12.010
  • Zou C, Vercauteren KOA, Michailidis E, et al. Experimental variables that affect human hepatocyte AAV transduction in liver chimeric mice. Mol Ther Methods Clin Dev. 2020;18:189–198. doi:10.1016/j.omtm.2020.05.033
  • Davidoff AM, Gray JT, Ng CY, et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther. 2005;11(6):875–888. doi:10.1016/j.ymthe.2004.12.022
  • Halbert CL, Rutledge EA, Allen JM, Russell DW, Miller AD. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. 2000;74(3):1524–1532. doi:10.1128/JVI.74.3.1524-1532.2000
  • Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–390. doi:10.1086/595830
  • Li C, Narkbunnam N, Samulski RJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19(3):288–294. doi:10.1038/gt.2011.90
  • Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–712. doi:10.1089/hum.2009.182
  • Kruzik A, Fetahagic D, Hartlieb B, et al. Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors. Mol Ther Methods Clin Dev. 2019;14:126–133. doi:10.1016/j.omtm.2019.05.014
  • Erles K, Sebökovà P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol. 1999;59(3):406–411. doi:10.1002/(SICI)1096-9071(199911)59:3<406:AID-JMV22>3.0.CO;2-N
  • Biomarin. Gene therapy study in severe hemophilia A patients with antibodies against AAV5 (270-203). MNLM identifier: NCT03520712. 2021.
  • Scallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood. 2006;107(5):1810–1817. doi:10.1182/blood-2005-08-3229
  • Monahan PE, Négrier C, Tarantino M, Valentino LA, Mingozzi F. Emerging immunogenicity and genotoxicity considerations of adeno-associated virus vector gene therapy for hemophilia. J Clin Med. 2021;10(11):2471. doi:10.3390/jcm10112471
  • Sabatino DE, Bushman FD, Chandler RJ, et al. Evaluating the state of the science for adeno-associated virus integration: an integrated perspective. Mol Ther. 2022;30(8):2646–2663. doi:10.1016/j.ymthe.2022.06.004
  • D’Avola D, López-Franco E, Sangro B, et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J Hepatol. 2016;65(4):776–783. doi:10.1016/j.jhep.2016.05.012
  • Kaeppel C, Beattie SG, Fronza R, et al. A largely random AAV integration profile after LPLD gene therapy. Nat Med. 2013;19(7):889–891. doi:10.1038/nm.3230
  • Uniqure.com. UniQure announces findings from reported case of hepatocellular carcinoma (HCC) in hemophilia B gene therapy program; 2021. Available from: https://wwwuniqurecom/PR_HCC%20Investigation%20Findings%20_3_29_21_FINALpdf. Accessed September 22, 2022.
  • Konkle B, Pierce G, Coffin D, et al. Core data set on safety, efficacy, and durability of hemophilia gene therapy for a global registry: communication from the SSC of the ISTH. J Thrombosis Haemostasis. 2020;18(11):3074–3077. doi:10.1111/jth.15023
  • Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50. doi:10.1186/1748-5908-4-50
  • Pfadenhauer LM, Gerhardus A, Mozygemba K, et al. Making sense of complexity in context and implementation: the Context and Implementation of Complex Interventions (CICI) framework. Implement Sci. 2017;12(1):21. doi:10.1186/s13012-017-0552-5
  • US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Human gene therapy for hemophilia. Guidance for industry; 2020. Available from: https://wwwfdagov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances. Accessed September 22, 2022.
  • Agency EM. EMA’s scientific guidelines on gene therapy; 2022. Available from: https://wwwemaeuropaeu/en/human-regulatory/research-development/scientific-guidelines/multidisciplinary/multidisciplinary-gene-therapy. Accessed September 22, 2022.
  • World Health Organization. WHO considerations on regulatory convergence of cell and gene therapy products; 2021:1–22. Available from: https://cdnwhoint/media/docs/default-source/biologicals/ecbs/who-public-consultation_cgtp-white-paper_16_dec_2021pdf?sfvrsn=18f6c549_5. Accessed September 22, 2022.
  • Drago D, Foss-Campbell B, Wonnacott K, Barrett D, Ndu A. Global regulatory progress in delivering on the promise of gene therapies for unmet medical needs. Mol Ther Methods Clin Dev. 2021;21:524–529. doi:10.1016/j.omtm.2021.04.001
  • Reiss UM, Mahlangu J, Ohmori T, Ozelo MC, Srivastava A, Zhang L. Haemophilia gene therapy - update on new country initiatives. Haemophilia. 2022;28:61–67. doi:10.1111/hae.14512
  • Reiss UM, Zhang L, Ohmori T. Hemophilia gene therapy-new country initiatives. Haemophilia. 2021;27(Suppl 3):132–141. doi:10.1111/hae.14080
  • World Federation of Hemophilia. Gene therapy for hemophilia; 2019. Available from: https://elearning.wfh.org/resource/gene-therapy-for-hemophilia/. Accessed September 22, 2022.
  • National Hemophilia Foundation. Gene and innovative therapies education. Available from: https://www.hemophilia.org/educational-programs/education/gene-and-innovative-therapies-education. Accessed March 10, 2022.
  • American Society of Gene and Cell Therapy. Hemophilia. Available from: https://patienteducation.asgct.org/disease-treatments/hemophilia. Accessed October 22, 2020.
  • International Society on Thrombosis and Hemostatis. Gene therapy in hemophilia an ISTH education initiative. Available from: https://genetherapy.isth.org/. Accessed September 29, 2021.
  • Dionyssopoulos A, Karalis T, Panitsides EA. Continuing medical education revisited: theoretical assumptions and practical implications: a qualitative study. BMC Med Educ. 2014;14:1051. doi:10.1186/s12909-014-0278-x
  • Vasquez-Loarte TC, Lucas TL, Harris-Wai J, Bowen DJ. Beliefs and values about gene therapy and in-utero gene editing in patients with hemophilia and their relatives. Patient. 2020;13(5):633–642. doi:10.1007/s40271-020-00442-7
  • Witkop M, Morgan G, O’Hara J, et al. Patient preferences and priorities for haemophilia gene therapy in the US: a discrete choice experiment. Haemophilia. 2021;27(5):769–782. doi:10.1111/hae.14383
  • van Overbeeke E, Michelsen S, Hauber B, et al. Patient perspectives regarding gene therapy in haemophilia: interviews from the PAVING study. Haemophilia. 2020;27:129–136.
  • Tingley K, Coyle D, Graham ID, et al. Stakeholder perspectives on clinical research related to therapies for rare diseases: therapeutic misconception and the value of research. Orphanet J Rare Dis. 2021;16(1):26. doi:10.1186/s13023-020-01624-0
  • Anderson EE, Newman SB, Matthews AK. Improving informed consent: stakeholder views. AJOB Empir Bioeth. 2017;8(3):178–188. doi:10.1080/23294515.2017.1362488
  • Krumb E, Lambert C, Hermans C. Patient selection for hemophilia gene therapy: real-life data from a single center. Res Pract Thrombosis Haemostasis. 2021;5(3):390–394. doi:10.1002/rth2.12494
  • Sidonio RF, Pipe SW, Callaghan MU, Valentino LA, Monahan PE, Croteau SE. Discussing investigational AAV gene therapy with hemophilia patients: a guide. Blood Rev. 2021;47:100759. doi:10.1016/j.blre.2020.100759
  • Hart DP, Branchford BR, Hendry S, et al. Optimizing language for effective communication of gene therapy concepts with hemophilia patients: a qualitative study. Orphanet J Rare Dis. 2021;16(1):189. doi:10.1186/s13023-020-01555-w
  • Miesbach W, O’Mahony B, Key NS, Makris M. How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia. 2019;25(4):545–557. doi:10.1111/hae.13769
  • van Overbeeke E, Michelsen S, Toumi M, et al. Market access of gene therapies across Europe, USA, and Canada: challenges, trends, and solutions. Drug Discov Today. 2020;26:399–415. doi:10.1016/j.drudis.2020.11.024
  • Garrison LP, Jiao B, Dabbous O. Gene therapy may not be as expensive as people think: challenges in assessing the value of single and short-term therapies. J Manag Care Special Pharm. 2021;27(5):674–681. doi:10.18553/jmcp.2021.27.5.674
  • Machin N, Ragni MV, Smith KJ. Gene therapy in hemophilia A: a cost-effectiveness analysis. Blood Adv. 2018;2(14):1792–1798. doi:10.1182/bloodadvances.2018021345
  • Cook K, Forbes SP, Adamski K, Ma JJ, Chawla A, Garrison LP. Assessing the potential cost-effectiveness of a gene therapy for the treatment of hemophilia A. J Med Econ. 2020;23:1–12. doi:10.1080/13696998.2019.1678170
  • Rind D, Walton S, Agboola F. Valoctocogene Roxaparvovec and Emicizumab for Hemophilia A: Effectiveness and Value; Evidence Report. Institute for Clinical and Economic Review; 2020.
  • Bolous NS, Chen Y, Wang H, et al. The cost-effectiveness of gene therapy for severe hemophilia B: a microsimulation study from the United States perspective. Blood. 2021;138:1677–1690. doi:10.1182/blood.2021010864
  • Ten Ham RM, Walker SM, Soares MO, et al. Modeling benefits, costs, and affordability of a novel gene therapy in hemophilia A. HemaSphere. 2022;6(2):e679. doi:10.1097/HS9.0000000000000679
  • Marsden G, Towse A, Pearson S, Dreitlein B, Henshall C. Gene therapy: understanding the science, assessing the evidence, and paying for value. 2017.
  • Drummond MF, Neumann PJ, Sullivan SD, et al. Analytic considerations in applying a general economic evaluation reference case to gene therapy. Value Health. 2019;22(6):661–668. doi:10.1016/j.jval.2019.03.012
  • Garrison LP, Pezalla E, Towse A, et al. Hemophilia gene therapy value assessment: methodological challenges and recommendations. Value Health. 2021;24(11):1628–1633. doi:10.1016/j.jval.2021.05.008
  • Institute for Clinical and Economic Review. Value assessment methods for “single or short-term transformative therapies” (SSTs); 2019. Available from: https://icerorg/wp-content/uploads/2020/10/ICER_SST_ProposedAdaptations_080619-2pdf. Accessed September 22, 2022.
  • Maldonado R, Jalil S, Wartiovaara K. Curative gene therapies for rare diseases. J Community Genet. 2020;11:1–10. doi:10.1007/s12687-019-00448-1
  • Ma C-C, Wang Z-L, Xu T, He Z-Y, Wei Y-Q. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40:107502. doi:10.1016/j.biotechadv.2019.107502
  • FDA. Statement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.d., Director of the Center for Biologics Evaluation and Research on New Policies to Advance Development of Safe and Effective Cell and Gene Therapies. FDA; 2019.
  • Goodman C, Berntorp E, Wong O; Council IHAS. Alternative payment models for durable and potentially curative therapies: the case of gene therapy for haemophilia A. Haemophilia. 2022;28:27–34. doi:10.1111/hae.14425
  • Noone D, Coffin D, Pierce GF. Reimbursing the value of gene therapy care in an era of uncertainty. Haemophilia. 2020;27:12–18.
  • Miesbach W, Chowdary P, Coppens M, et al. Delivery of AAV-based gene therapy through haemophilia centres-a need for re-evaluation of infrastructure and comprehensive care: a joint publication of EAHAD and EHC. Haemophilia. 2021;27(6):967–973. doi:10.1111/hae.14420