208
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Impact of Abnormal Leukocyte Count in the Pathophysiology of Sickle Cell Anemia

ORCID Icon
Pages 673-679 | Received 19 Jun 2022, Accepted 10 Nov 2022, Published online: 16 Nov 2022

References

  • Stamatoyannopoulos G. The molecular basis of hemoglobin disease. Annu Rev Genet. 2003;6:47–70. doi:10.1146/annurev.ge06120172000403
  • Ballas SK, Kesen MR, Goldberg MF, et al. Beyond the definitions of the phenotypic complications of sickle cell disease: an update on management. Sci World J. 2012;2012:55. PMC3415156.
  • Solovieff N, Hartley SW, Baldwin CT, et al. Ancestry of African Americans with sickle cell disease. Blood Cells Mol Dis. 2011;47(1):41. PMC3116635. doi:10.1016/j.bcmd.2011.04.002
  • Curtis SA, Danda N, Etzion Z, Cohen HW, Billett HH, Lam W. Elevated steady state WBC and platelet counts are associated with frequent emergency room use in adults with sickle cell anemia. PLoS One. 2015;10(8):e0133116. doi:10.1371/journal.pone.0133116
  • Ahmed AE, Ali YZ, Al-Suliman AM, et al. The prevalence of abnormal leukocyte count, and its predisposing factors, in patients with sickle cell disease in Saudi Arabia. J Blood Med. 2017;8(185):185–191. PMC5661844. doi:10.2147/JBM.S148463
  • Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–809. doi:10.1182/blood-2015-09-618538
  • Akinbami A, Dosunmu A, Adediran A, Oshinaike O, Adebola P, Arogundade O. Haematological values in homozygous sickle cell disease in steady state and haemoglobin phenotypes AA controls in Lagos, Nigeria. BMC Res Notes. 2012;5(1):1–6. doi:10.1186/1756-0500-5-396
  • Buchanan GR, Glader BE. Leukocyte counts in children with sickle cell disease: comparative values in the steady state, vaso-occlusive crisis, and bacterial infection. Am J Dis Child. 1978;132(4):396–398. doi:10.1001/archpedi.1978.02120290068013
  • Okpala I. The intriguing contribution of white blood cells to sickle cell disease – a red cell disorder. Blood Rev. 2004;18(1):65–73. doi:10.1016/S0268-960X(03)00037-7
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269. doi:10.7326/0003-4819-151-4-200908180-00135
  • Wun T. The role of inflammation and leukocytes in the pathogenesis of sickle cell disease. Hematology. 2000;5(5):403–412. doi:10.1080/10245332.2000.11746536
  • Okpala I, Daniel Y, Haynes R, Odoemene D, Goldman J. Relationship between the clinical manifestations of sickle cell disease and the expression of adhesion molecules on white blood cells. Eur J Haematol. 2002;69(3):135–144. doi:10.1034/j.1600-0609.2002.02775.x
  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002;99(5):3047–3051. doi:10.1073/pnas.052522799
  • Hedo C, Aken’ova Y, Okpala I, Salimonu L. Serum immunoglobulin (G, A and M) classes and IgG subclasses in sickle cell anaemia. APMIS. 1993;101(5):353–357. doi:10.1111/j.1699-0463.1993.tb00121.x
  • Anyaegbu CC, Okpala IE, Aken’ova AY, Salimonu LS. Complement haemolytic activity, circulating immune complexes and the morbidity of sickle cell anaemia. APMIS. 1999;107(7):699–702. doi:10.1111/j.1699-0463.1999.tb01463.x
  • Hedo CC, Aken’ova YA, Okpala IE, Durojaiye AO, Salimonu LS. Acute phase reactants and severity of homozygous sickle cell disease. J Intern Med. 1993;233(6):467–470. doi:10.1111/j.1365-2796.1993.tb01000.x
  • Anyaegbu CC, Okpala IE, Akren’Ova A, Salimonu S. Peripheral blood neutrophil count and candidacidal activity correlate with the clinical severity of sickle cell anaemia (SCA). Eur J Haematol. 1998;60(4):267–268. doi:10.1111/j.1600-0609.1998.tb01036.x
  • Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med. 1995;332(20):1317–1322. doi:10.1056/NEJM199505183322001
  • Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol. 2002;9(2):101–106. doi:10.1097/00062752-200203000-00003
  • Yang J, Furie BC, Furie B. The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost. 1999;81(01):1–7. doi:10.1055/s-0037-1614407
  • Silverstein RL, Asch AS, Nachman RL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J Clin Invest. 1989;84(2):546–552. doi:10.1172/JCI114197
  • Walcheck B, Moore KL, McEver RP, Kishimoto TK. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest. 1996;98(5):1081–1087. doi:10.1172/JCI118888
  • Tan P, Luscinskas FW, Homer-Vanniasinkam S. Cellular and molecular mechanisms of inflammation and thrombosis. Eur J Vasc Endovasc Surg. 1999;17(5):373–389. doi:10.1053/ejvs.1998.0759
  • Belcher JD, Marker PH, Weber JP, Hebbel RP, Vercellotti GM. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood. 2000;96(7):2451–2459. doi:10.1182/blood.V96.7.2451
  • Stewart West M, Wethers D, Smith J, Steinberg M. The cooperative study of sickle cell disease. Laboratory profile of sickle cell disease: a cross-sectional analysis. The cooperative study of sickle cell disease. J Clin Epidemiol. 1992;45(8):893–909. doi:10.1016/0895-4356(92)90073-V
  • Miller ST, Sleeper LA, Pegelow CH, et al. Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med. 2000;342(2):83–89. doi:10.1056/NEJM200001133420203
  • Platt OS. The acute chest syndrome of sickle cell disease. N Engl J Med. 2000;342(25):1904–1907. doi:10.1056/NEJM200006223422510
  • Hofstra TC, Kalra VK, Meiselman HJ, Coates TD. Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood. 1996;87(10):4440–4447. doi:10.1182/blood.V87.10.4440.bloodjournal87104440
  • Mendoza E, Gutgsell N, Temple JD, Issitt P. Monocyte phagocytic activity in sickle cell disease. Acta Haematol. 1991;85(4):199–201. doi:10.1159/000204892
  • Gawaz M, Fateh‐moghadam S, Pilz G, Gurland HJ, Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest. 1995;25(11):843–851. doi:10.1111/j.1365-2362.1995.tb01694.x
  • Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97(6):1525–1534. doi:10.1172/JCI118575
  • Dias-Da-Motta PM, Arruda VR, Muscará MN, et al. The release of nitric oxide and superoxide anion by neutrophils and mononuclear cells from patients with sickle cell anaemia. Br J Haematol. 1996;93(2):333–340. doi:10.1046/j.1365-2141.1996.4951036.x
  • Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VVB, Prchal JT. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood. 2001;97(10):3313–3314. doi:10.1182/blood.V97.10.3313
  • Abboud M, Laver J, Blau CA. Granulocytosis causing sickle-cell crisis. Lancet. 1998;351(9107):959. doi:10.1016/S0140-6736(05)60614-9
  • Wei A, Grigg A. Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/beta+ thalassemia. Blood. 2001;97(12):3998–3999. doi:10.1182/blood.V97.12.3998
  • Wali Y, Beshlawi I, Fawaz N, et al. Coexistence of sickle cell disease and severe congenital neutropenia: first impressions can be deceiving. Eur J Haematol. 2012;89(3):245–249. doi:10.1111/j.1600-0609.2012.01827.x
  • Saleh AW, Hillen HFP, Duits AJ. Levels of endothelial, neutrophil, and platelet-specific factors in sickle cell anemia patients during hydroxyurea therapy. Acta Haematol. 1999;102(1):31–37. doi:10.1159/000040964
  • Almeida CB, Scheiermann C, Jang JE, et al. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood. 2012;120(14):2879–2888. doi:10.1182/blood-2012-02-409524
  • Barazia A, Li J, Kim K, Shabrani N, Cho J. Hydroxyurea with AKT2 inhibition decreases vaso-occlusive events in sickle cell disease mice. Blood. 2015;126(22):2511–2517. doi:10.1182/blood-2015-02-626234
  • Charache S, Barton FB, Moore RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The multicenter study of hydroxyurea in sickle cell anemia. Medicine. 1996;75(6):300–326. doi:10.1097/00005792-199611000-00002
  • Benkerrou M, Delarche C, Brahimi L, et al. Hydroxyurea corrects the dysregulated L-selectin expression and increased H(2)O(2) production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood. 2002;99(7):2297–2303. doi:10.1182/blood.V99.7.2297
  • Safaya S, Steinberg MH, Klings ES. Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of the NF-κB signaling pathway. Mol Immunol. 2012;50(1–2):117–123. doi:10.1016/j.molimm.2011.12.012
  • Keegan PM, Surapaneni S, Platt MO. Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins k and v activity in endothelial cells. Anemia. 2012;2012:1–7. doi:10.1155/2012/201781
  • Ivetic A, Green HLH, Hart SJ. L-selectin: a major regulator of leukocyte adhesion, migration and signaling. Front Immunol. 2019;10(May). PMC6527602. doi:10.3389/fimmu.2019.01068
  • Panés J, Perry M, Granger DN. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol. 1999;126(3):537. PMC1565837, doi:10.1038/sj.bjp.0702328
  • Johnson C, Telen MJ. Adhesion molecules and hydroxyurea in the pathophysiology of sickle cell disease. Haematologica. 2008;93(4):481–485. doi:10.3324/haematol.12734