0
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Telomere Dynamics in Sickle Cell Anemia: Unraveling Molecular Aging and Disease Progression

ORCID Icon &
Pages 313-323 | Received 03 Feb 2024, Accepted 23 Jul 2024, Published online: 25 Jul 2024

References

  • Obeagu EI, Ubosi NI, Obeagu GU, Egba SI, Bluth MH. Understanding apoptosis in sickle cell anemia patients: mechanisms and implications. Medicine. 2024;103(2):e36898. PMID: 38215146; PMCID: PMC10783340. doi:10.1097/MD.0000000000036898
  • Obeagu EI. Maximizing longevity: erythropoietin’s impact on sickle cell anaemia survival rates. Ann Med Surg Lond. 2024;86(3):1570–1574. PMID: 38463100; PMCID: PMC10923353. doi:10.1097/MS9.0000000000001763
  • Obeagu EI, Obeagu GU. Malnutrition in sickle cell anemia: prevalence, impact, and interventions: a Review. Medicine. 2024;103(20):e38164. PMID: 38758879; PMCID: PMC11098235. doi:10.1097/MD.0000000000038164
  • Bettin N, Oss Pegorar C, Cusanelli E. The emerging roles of TERRA in telomere maintenance and genome stability. Cells. 2019;8(3):246. doi:10.3390/cells8030246
  • Obeagu EI, Obeagu GU. Management of diabetes mellitus patients with sickle cell anemia: challenges and therapeutic approaches. Medicine. 2024;103(17):e37941. PMID: 38669382; PMCID: PMC11049766. doi:10.1097/MD.0000000000037941
  • Obeagu EI, Obeagu GU, Akinleye CA, Igwe MC. Nosocomial infections in sickle cell anemia patients: prevention through multi-disciplinary approach: a review. Medicine. 2023;102(48):e36462. PMID: 38050205; PMCID: PMC10695528. doi:10.1097/MD.0000000000036462
  • Zhang H, Liesveld JL, Calvi LM, et al. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res. 2023;11(1):15. doi:10.1038/s41413-023-00249-w
  • O’sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–181. doi:10.1038/nrm2848
  • Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: origin, function, instability and evolution. Mutat Res/Rev Mutat Res. 2017;773:51–65. doi:10.1016/j.mrrev.2017.04.002
  • Mir SM, Samavarchi Tehrani S, Goodarzi G, et al. Shelterin complex at telomeres: implications in ageing. Clin Interventions Aging. 2020;Volume 15:827–839. doi:10.2147/CIA.S256425
  • Giardini MA, Segatto M, Da Silva MS, Nunes VS, Cano MI. Telomere and telomerase biology. Progr Molecul Biol Translat Sci. 2014;125:1–40.
  • Wu RA, Upton HE, Vogan JM, Collins K. Telomerase mechanism of telomere synthesis. Annu Rev Biochem. 2017;86:439–460. doi:10.1146/annurev-biochem-061516-045019
  • Fumagalli M, Rossiello F, Clerici M, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012;14(4):355–365. doi:10.1038/ncb2466
  • Lin J, Epel E. Stress and telomere shortening: insights from cellular mechanisms. Ageing Res Rev. 2022;73:101507. doi:10.1016/j.arr.2021.101507
  • Fiorini E, Santoni A, Colla S. Dysfunctional telomeres and hematological disorders. Differentiation. 2018;100:1. doi:10.1016/j.diff.2018.01.001
  • Monaghan P, Eisenberg DT, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philos Trans R Soc B. 2018;373(1741):20160435. doi:10.1098/rstb.2016.0435
  • Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines. 2022;10(10):2335. doi:10.3390/biomedicines10102335
  • Chan M, Yuan H, Soifer I, et al. Novel insights from a multiomics dissection of the Hayflick limit. Elife. 2022;11:e70283. doi:10.7554/eLife.70283
  • Razgonova MP, Zakharenko AM, Golokhvast KS, et al. Telomerase and telomeres in aging theory and chronographic aging theory. Molecul Med Rep. 2020;22(3):1679–1694. doi:10.3892/mmr.2020.11274
  • Davinelli S, De Vivo I. Lifestyle choices, psychological stress and their impact on ageing: the role of telomeres. Centenarians. 2019;2019:135–148.
  • Batista LF. Telomere biology in stem cells and reprogramming. Progr Molecul Biol Translat Sci. 2014;125:67–88.
  • Effros RB. Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp Gerontology. 2011;46(2–3):135–140. doi:10.1016/j.exger.2010.08.027
  • Dalgård C, Benetos A, Verhulst S, et al. Leukocyte telomere length dynamics in women and men: menopause vs age effects. Int J Epidemiol. 2015;44(5):1688–1695. doi:10.1093/ije/dyv165
  • Gardner M, Bann D, Wiley L, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontology. 2014;51:15–27. doi:10.1016/j.exger.2013.12.004
  • Mayer S, Brüderlein S, Perner S, et al. Sex-specific telomere length profiles and age-dependent erosion dynamics of individual chromosome arms in humans. Cytogen Genome Res. 2006;112(3–4):194–201. doi:10.1159/000089870
  • Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557–579. doi:10.1152/physrev.00026.2007
  • Dilli PP, Obeagu E, Tamale A, Ajugwo A, Pius T, Makeri D. Update on the practice of premarital screening for sickle cell traits in Africa: a systematic review and meta-analysis. BMC Public Health. 2024;24(1):1467. PMID: 38822327; PMCID: PMC11143629. doi:10.1186/s12889-024-19001-y
  • Obeagu EI, Obeagu GU. Managing gastrointestinal challenges: diarrhea in sickle cell anemia. Medicine. 2024;103(18):e38075. PMID: 38701274; PMCID: PMC11062666. doi:10.1097/MD.0000000000038075
  • Obeagu EI, Obeagu GU. Implications of climatic change on sickle cell anemia: a review. Medicine. 2024;103(6):e37127. PMID: 38335412; PMCID: PMC10860944. doi:10.1097/MD.0000000000037127
  • Bizarro J, Bhardwaj A, Smith S, Meier UT. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. ?mol Biol Cell. 2019;30(26):3136–3150. doi:10.1091/mbc.E19-08-0429
  • Obeagu EI. Eosinophilic dialogues: a molecular exploration of sickle cell anemia severity. Ann Med Surg. 2024;2024:10–97.
  • Drašar ER, Jiang J, Gardner K, et al. Leucocyte telomere length in patients with sickle cell disease. Br J Haematol. 2014;165(5):725–727. PMID: 24666270. doi:10.1111/bjh.12776
  • Mekontso Dessap A, Cecchini J, Chaar V, et al. Telomere attrition in sickle cell anemia. Am J Hematol. 2017;92(6):E112–E114. PMID: 28295518. doi:10.1002/ajh.24721
  • Cianflone E, Torella M, Biamonte F, et al. Targeting cardiac stem cell senescence to treat cardiac aging and disease. Cells. 2020;9(6):1558. doi:10.3390/cells9061558
  • Suliman ME, Ansari MGA, Rayis MA, et al. Telomere length and telomere repeat-binding protein in children with sickle cell disease. Pediatr Res. 2022;91(3):539–544. PMID: 33824452; PMCID: PMC8904250. doi:10.1038/s41390-021-01495-6
  • Thongon N, Ma F, Santoni A, et al. Hematopoiesis under telomere attrition at the single-cell resolution. Nat Commun. 2021;12(1):6850. doi:10.1038/s41467-021-27206-7
  • Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: implications in human aging. Environ Toxicol Pharmacol. 2021;85:103633. doi:10.1016/j.etap.2021.103633
  • Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discovery. 2016;6(6):584–593. doi:10.1158/2159-8290.CD-16-0062
  • Gorur V, Kranc KR, Ganuza M, Telfer P. Haematopoietic stem cell health in sickle cell disease and its implications for stem cell therapies and secondary haematological disorders. Blood Rev. 2023;63:101137. doi:10.1016/j.blre.2023.101137
  • Fakouri NB, Hou Y, Demarest TG, et al. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J. 2019;286(6):1058–1073. doi:10.1111/febs.14663
  • Adwas AA, Elsayed A, Azab AE, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1):43–47.
  • Juan CA, de la Lastra JM P, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):4642. doi:10.3390/ijms22094642
  • Colnaghi R, Carpenter G, Volker M, O’Driscoll M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol. 2011;22(8):875–885. doi:10.1016/j.semcdb.2011.07.010
  • Huang Z, Chen Y, Zhang Y. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci. 2020;45:1–7. doi:10.1007/s12038-020-00055-0
  • Ferguson LR, Chen H, Collins AR, et al. Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semi Cancer Biol. 2015;35:S5–S24. doi:10.1016/j.semcancer.2015.03.005
  • Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–656. doi:10.1016/j.cell.2017.01.002
  • Victorelli S, Passos JF. Telomeres and cell senescence-size matters not. EBioMedicine. 2017;21:14–20. doi:10.1016/j.ebiom.2017.03.027
  • Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest. 2004;113(1):8–13. doi:10.1172/JCI200420663
  • Colella MP, Santana BA, Conran N, et al. Telomere length correlates with disease severity and inflammation in sickle cell disease. Rev Brasil de Hematol Hemoterap. 2017;39(2):140–145. doi:10.1016/j.bjhh.2017.02.007
  • Idris IM, Botchwey EA, Hyacinth HI. Sickle cell disease as an accelerated aging syndrome. Exp Biol Med. 2022;247(4):368–374. doi:10.1177/15353702211068522
  • Kapor S, Čokić V, Santibanez JF. Mechanisms of hydroxyurea-induced cellular senescence: an oxidative stress connection? Oxid Med Cell Longev. 2021;1–6. doi:10.1155/2021/7753857
  • Farías JG, Molina VM, Carrasco RA, et al. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 2017;9(9):966. doi:10.3390/nu9090966
  • Zong C, Zhu T, He J, Huang R, Jia R, Shen J. PARP mediated DNA damage response, genomic stability and immune responses. Internat J Can. 2022;150(11):1745–1759. doi:10.1002/ijc.33918
  • Chambers CR, Ritchie S, Pereira BA, Timpson P. Overcoming the senescence‐associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol Oncol. 2021;15(12):3242–3255. doi:10.1002/1878-0261.13042
  • Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci. 2016;17(7):1164. doi:10.3390/ijms17071164
  • Muresanu C, Somasundaram SG, Vissarionov SV, et al. Updated understanding of cancer as a metabolic and telomere-driven disease, and proposal for complex personalized treatment, a hypothesis. Int J Mol Sci. 2020;21(18):6521. doi:10.3390/ijms21186521
  • Prata LG, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunopathol. 2018;40:101275. doi:10.1016/j.smim.2019.04.003
  • Arora L, Narula A. Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci. 2017;8:1932. doi:10.3389/fpls.2017.01932
  • Singh V, Gohil N, Ramirez Garcia R, Braddick D, Fofié CK. Recent advances in CRISPR‐Cas9 genome editing technology for biological and biomedical investigations. J Cell Biochem. 2018;119(1):81–94. doi:10.1002/jcb.26165