733
Views
29
CrossRef citations to date
0
Altmetric
Review

A Recent Achievement In the Discovery and Development of Novel Targets for the Treatment of Type-2 Diabetes Mellitus

Pages 1-15 | Published online: 10 Jan 2020

References

  • Zheng Y, Ley SH, Hu FB. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88. doi:10.1038/nrendo.2017.151
  • Aynalem SB, Zeleke AJ. Prevalence of diabetes mellitus and its risk factors among individuals aged 15 years and above in Mizan-Aman town, Southwest Ethiopia, 2016: a cross-sectional study. Int J Endocrinol. 2018;2018:1–7. doi:10.1155/2018/9317987
  • Xu Y, Rubin BR, Orme CM, et al. Dual-mode of insulin action controls GLUT4 vesicle exocytosis. J Cell Biol. 2011;193(4):643–653. doi:10.1083/jcb.201008135
  • Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 vesicle traffic: a cornerstone of insulin action. Trends Endocrinol Metab. 2017;28(8):597–611. doi:10.1016/j.tem.2017.05.002
  • Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. doi:10.1186/s12933-018-0762-4
  • Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini-review. Curr Diabetes Rev. 2017;13(1):3–10. doi:10.2174/1573399812666151016101622
  • Moon MK, Hur KY, Ko SH, et al. Combination therapy of oral hypoglycemic agents in patients with type 2 diabetes mellitus. Diabetes Metab J. 2017;41(5):357–366. doi:10.4093/dmj.2017.41.5.357
  • Chaudhury A, Duvoor C, Dendi R, et al. Clinical review of anti-diabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6. doi:10.3389/fendo.2017.00006
  • Bolen S, Feldman L, Vassy J, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147(6):386–399. doi:10.7326/0003-4819-147-6-200709180-00178
  • Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–1596. doi:10.1007/s00125-012-2534-0
  • DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel agents for the treatment of type 2 diabetes. Diabetes Spectr. 2014;27(2):100–112. doi:10.2337/diaspect.27.2.100
  • Lapane KL, Yang S, Brown MJ, Jawahar R, Pagliasotti C. Sulfonylureas and risk of falls and fractures: a systematic review. Drugs Aging. 2013;30(7):527–547. doi:10.1007/s40266-013-0081-0
  • Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci. 2013;9(5):936. doi:10.5114/aoms.2013.34991
  • Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4.
  • Abbas AS, Dehbi HM, Ray KK. Cardiovascular and non-cardiovascular safety of dipeptidyl peptidase-4 inhibition: a meta-analysis of randomized controlled cardiovascular outcome trials. Diabetes Obes Metab. 2016;18(3):295–299. doi:10.1111/dom.12595
  • Nanjan MJ, Mohammed M, Kumar BP, Chandrasekar MJ. Thiazolidinediones as anti-diabetic agents: a critical review. Bioorg Chem. 2018;1(77):548–567. doi:10.1016/j.bioorg.2018.02.009
  • Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. doi:10.1007/s00125-017-4336-x
  • Hücking K, Kostic Z, Pox C, et al. α-Glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7–36 amide) and to delay gastric emptying in Type 2 diabetic patients. Diabet Med. 2005;22(4):470–476. doi:10.1111/dme.2005.22.issue-4
  • Jorsal T, Rungby J, Knop FK, Vilsbøll T. GLP-1 and amylin in the treatment of obesity. Curr Diab Rep. 2016;16(1):1. doi:10.1007/s11892-015-0693-3
  • Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: a systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–794. doi:10.1111/dom.12670
  • Fonseca VA, Handelsman Y, Staels B. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes Metab. 2010;12(5):384–392. doi:10.1111/dom.2010.12.issue-5
  • Lamos EM, Levitt DL, Munir KM. A review of dopamine agonist therapy in type 2 diabetes and effects on cardio-metabolic parameters. Prim Care Diabetes. 2016;10(1):60–65. doi:10.1016/j.pcd.2015.10.008
  • Mannucci E, Monami M, Marchionni N. Short-acting insulin analogues vs. regular human insulin in type 2 diabetes: a meta-analysis. Diabetes Obes Metab. 2009;11(1):53–59. doi:10.1111/dom.2009.11.issue-1
  • Brauner-Osborne H, Wellendorph P, Jensen AA. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets. 2007;8(1):169–184. doi:10.2174/138945007779315614
  • Ahren B. Islet G protein-coupled receptors as potential targets for the treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8(5):369. doi:10.1038/nrd2782
  • Lee Kennedy R, Vangaveti V, Jarrod G, Shashidhar V, Shashidhar V, Baune BT. Free fatty acid receptors: emerging targets for the treatment of diabetes and its complications. Ther Adv Endocrinol Metab. 2010;1(4):165–175. doi:10.1177/2042018810381066
  • Ichimura A, Hasegawa S, Kasubuchi M, Kimura I. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol. 2014;6(5):236.
  • Li Z, Qiu Q, Geng X, Yang J, Huang W, Qian H. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin Investig Drugs. 2016;25(8):871–890. doi:10.1080/13543784.2016.1189530
  • Defossa E, Wagner M. Recent developments in the discovery of FFA1 receptor agonists as a novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett. 2014;24(14):2991–3000. doi:10.1016/j.bmcl.2014.05.019
  • Yang JW, Kim HS, Choi YW, Kim YM. Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes Metab. 2018;20(2):257–269. doi:10.1111/dom.13062
  • Liu Y, Zhang Q, Chen LH, et al. Design and synthesis of 2-alkylpyrimidine-4, 6-diol and 6-alkylpyridine-2, 4-diol as potent GPR84 agonists. ACS Med Chem Lett. 2016;7(6):579–583. doi:10.1021/acsmedchemlett.6b00025
  • Shehata MA, Christensen HB, Isberg V, et al. Identification of the first surrogate agonists for the G protein-coupled receptor GPR132. RSC Adv. 2015;5(60):48551–48557. doi:10.1039/C5RA04804D
  • Sprecher D, Maxwell M, Goodman J, et al. Discovery and characterization of GSK256073, a non-flushing hydroxy-carboxylic acid receptor 2 (HCA2) agonist. Eur J Pharmacol. 2015;756:1–7. doi:10.1016/j.ejphar.2015.01.051
  • Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol. 2018;175(13):2543–2553. doi:10.1111/bph.v175.13
  • Ou HY, Wu HT, Hung HC, Yang YC, Wu JS, Chang CJ. Multiple mechanisms of GW-9508, a selective G protein-coupled receptor 40 agonists, in the regulation of glucose homeostasis and insulin sensitivity. Am J Physiol Endocrinol Metab. 2013;304(6):E668–76. doi:10.1152/ajpendo.00419.2012
  • Wasserman DH. Four grams of glucose. Am J Physiol Endocrinol Metab. 2009;296(1):E11–E21. doi:10.1152/ajpendo.90563.2008
  • Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The new biology and pharmacology of glucagon. Physiol Rev. 2017;97(2):721–766. doi:10.1152/physrev.00025.2016
  • Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab. 2009;296(3):E415–21. doi:10.1152/ajpendo.90887.2008
  • Ouhilal S, Vuguin P, Cui L, et al. Hypoglycemia, hyperglucagonemia, and fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in pregnancy maintenance. Am J Physiol Endocrinol Metab. 2011;302(5):522–531. doi:10.1152/ajpendo.00420.2011
  • Lotfy M, Kalasz H, Szalai G, Singh J, Adeghate E. Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus. Open Med Chem J. 2014;8:28. doi:10.2174/1874104501408010028
  • Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs. 2017;26(12):1373–1389. doi:10.1080/13543784.2017.1395020
  • Lei L, Liu S, Li Y, et al. The potential role of glucokinase activator SHP289-04 in anti-diabetes and hepatic protection. Eur J Pharmacol. 2018;826:17–23. doi:10.1016/j.ejphar.2018.02.036
  • Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov Today. 2009;14(15–16):784–792. doi:10.1016/j.drudis.2009.05.013
  • Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J Diabetes Investig. 2015;6(2):124–132. doi:10.1111/jdi.2015.6.issue-2
  • Anık A, Çatlı G, Abacı A, Böber E. Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. 2015;28(3–4):251–263. doi:10.1515/jpem-2014-0384
  • Bhuniya D, Kapkoti SG, Warrier SJ, Kukrejka G, Mavinahalli NJ, Palle PV Pyrrole-2-carboxamide derivatives as glucokinase activators, their process, and pharmaceutical application. United States patent US 8,299,115. 2012 Oct 30.
  • Scheen AJ. Investigational insulin secretagogues for type 2 diabetes. Expert Opin Investig Drugs. 2016;25(4):405–422. doi:10.1517/13543784.2016.1152260
  • Kamimura H, Ito S, Chijiwa H, et al. Simulation of human plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling. Xenobiotica. 2017;47(5):382–393. doi:10.1080/00498254.2016.1199063
  • Zhu XX, Zhu DL, Li XY, et al. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: a 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab. 2018;20(9):2113–2120. doi:10.1111/dom.13338
  • Tsumura Y, Tsushima Y, Tamura A, et al. TMG-123, a novel glucokinase activator, exerts durable effects on hyperglycemia without increasing triglyceride in diabetic animal models. PLoS One. 2017;12(2):e0172252. doi:10.1371/journal.pone.0172252
  • Vella A, Freeman JL, Dunn I, Keller K, Buse JB, Valcarce C. Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med. 2019;11:475. doi:10.1126/scitranslmed.aau3441
  • Kubota K, Inaba SI, Nakano R, et al. Identification of activating enzymes of a novel FBPase inhibitor prodrug, CS-917. Pharmacol Res Perspect. 2015;3(3):e00138. doi:10.1002/prp2.138
  • Kaur R, Dahiya L, Kumar M. Fructose-1, 6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem. 2017;141:473–505. doi:10.1016/j.ejmech.2017.09.029
  • Yip J, Geng X, Shen J, Ding Y. Cerebral gluconeogenesis and diseases. Front Pharmacol. 2017;4(7):521.
  • Gizak A, Duda P, Wisniewski J, Rakus D. Fructose-1, 6-bisphosphatase: from a glucose metabolism enzyme to the multifaceted regulator of cell fate. Adv Biol Regul. 2019;72:41–50. doi:10.1016/j.jbior.2019.03.001
  • Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1–2):44–53. doi:10.1016/j.mce.2009.09.022
  • Nakaishi Y, Bando M, Shimizu H, et al. Structural analysis of human glutamine: fructose-6-phosphate amidotransferase, a key regulator in type 2 diabetes. FEBS Lett. 2009;583(1):163–167. doi:10.1016/j.febslet.2008.11.041
  • Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006;290(1):E1–E8. doi:10.1152/ajpendo.00329.2005
  • Jeong JY, Jeoung NH, Park KG, Lee IK. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes Metab J. 2012;36(5):328–335. doi:10.4093/dmj.2012.36.5.328
  • Mayers RM, Leighton B, Kilgour E. PDH kinase inhibitors: a novel therapy for Type II diabetes? 2005:367–370.
  • Hasan N, Mujahid M, Badruddeen MK, et al. J Pharm Res. 2017;6(2).
  • Singh Grewal A, Bhardwaj S, Pandita D, Lather V, Singh Sekhon B. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem. 2015;16(2):120–162. doi:10.2174/1389557515666150909143737
  • Ramana KV. Aldose reductase: new insights for an old enzyme. Biomol Concepts. 2011;2(1–2):103–114. doi:10.1515/bmc.2011.002
  • Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem. 2003;10(15):1329–1352. doi:10.2174/0929867033457377
  • Iyer S, Murthy K, Parton Z, et al. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG. bioRxiv. 2019;Jan:626697.
  • Zhao C, Wu Y, Yang C, Liu B, Huang Y. Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. Int J Food Sci Technol. 2015;50(8):1705–1717. doi:10.1111/ijfs.2015.50.issue-8
  • Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M. Protein–tyrosine phosphatase 1B–deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α–induced insulin resistance. Diabetes. 2007;56(2):404–413. doi:10.2337/db06-0989
  • Møller NP, Iversen LF, Andersen HS, McCormack JG. Protein tyrosine phosphatases (PTPs) as drug targets: inhibitors of PTP-1B for the treatment of diabetes. Curr Opin Drug Discov Devel. 2000;3(5):527–540.
  • Luo J, Xu Q, Jiang B, et al. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. Br J Pharmacol. 2018;175(1):140–153. doi:10.1111/bph.v175.1
  • Limbocker R, Chia S, Ruggeri FS, et al. Trodusquemine enhances Aβ 42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat Commun. 2019;10(1):225. doi:10.1038/s41467-018-07699-5
  • Patil PD, Mahajan UB, Patil KR, et al. Past and current perspective on new therapeutic targets for Type-II diabetes. Drug Des Devel Ther. 2017;11:1567. doi:10.2147/DDDT.S133453
  • Di Dalmazi G, Pagotto U, Pasquali R, Vicennati V. Glucocorticoids and type 2 diabetes: from physiology to pathology. J Nutr Metab. 2012;2012:1–9. doi:10.1155/2012/525093
  • Bauerle KT, Harris C. Glucocorticoids and Diabetes. Mo Med. 2016;113(5):378.
  • Stewart PM, Tomlinson JW. Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 for patients with metabolic syndrome: is the target liver, fat, or both? Diabetes. 2009;58(1):14–15. doi:10.2337/db08-1404
  • Anagnostis P, Katsiki N, Adamidou F, et al. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metabolism. 2013;62(1):21–33. doi:10.1016/j.metabol.2012.05.002
  • Nguyen ND, Le LT. Targeted proteins for diabetes drug design. Adv Nat Sci. 2012;3(1):013001.
  • Tiwari N, Thakur AK, Kumar V, Dey A, Kumar V. Therapeutic targets for diabetes mellitus: an update. Clin Pharmacol Biopharm. 2014;3(1):1. doi:10.4172/2167-065X.1000117
  • Liu JJ, Foo JP, Liu S, Lim SC. The role of fibroblast growth factor 21 in diabetes and its complications: a review from the clinical perspective. Diabetes Res Clin Pract. 2015;108(3):382–389. doi:10.1016/j.diabres.2015.02.032
  • Yuan D, Wu BJ, Henry A, Rye KA. Role of fibroblast growth factor 21 in gestational diabetes mellitus: a mini-review. Clin Endocrinol (Oxf). 2019;90(1):47–55. doi:10.1111/cen.13881
  • Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr. 2011;93(4):901S–5S. doi:10.3945/ajcn.110.001941
  • Kim JH, Bae KH, Choi YK, et al. Fibroblast growth factor 21 analogues LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes Metab. 2015;17(2):161–169. doi:10.1111/dom.12408
  • Kitada M, Koya D. SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab J. 2013;37(5):315–325. doi:10.4093/dmj.2013.37.5.315
  • Bonkowski MS, Sinclair DA. Slowing aging by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679. doi:10.1038/nrm.2016.93
  • Huynh FK, Hershberger KA, Hirschey MD. Targeting sirtuins for the treatment of diabetes. Diabetes Manag (Lond). 2013;3(3):245. doi:10.2217/dmt.13.6
  • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712.
  • Nguyen LT, Chen H, Mak C, Zaky A, Pollock C, Saad S. SRT1720 attenuates obesity and insulin resistance but not liver damage in the offspring due to maternal and postnatal high-fat diet consumption. Am J Physiol Endocrinol Metab. 2018;315(2):E196–E203. doi:10.1152/ajpendo.00472.2017
  • Kim MJ, An HJ, Kim DH, et al. Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice. Bioorg Med Chem Lett. 2018;28(4):684–688. doi:10.1016/j.bmcl.2018.01.021
  • Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87. doi:10.1186/s12929-016-0303-y
  • Everett BM, Donath MY, Pradhan AD, et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018;71(21):2392–2401. doi:10.1016/j.jacc.2018.03.002
  • Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465. doi:10.1038/nrd4275
  • Akash MS, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in the development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105–110. doi:10.1002/jcb.26174
  • Delporte C. Recent advances in the potential clinical application of ghrelin in obesity. J Obes. 2012;20:2012.
  • McCallum RW, Lembo A, Esfandyari T, et al. TZP-102 Phase 2b Study Group. Phase 2b, randomized, double-blind 12-week studies of TZP-102, a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterol Motil. 2013;25(11):e705–17. doi:10.1111/nmo.2013.25.issue-11
  • Pradhan G, Wu CS, Lee JH, et al. Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Sci Rep. 2017;7(1):979. doi:10.1038/s41598-017-00888-0
  • Cao J, Zhou Y, Peng H, et al. Targeting Acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) with small molecule inhibitors for the treatment of metabolic diseases. J Biol Chem. 2011;286(48):41838–41851. doi:10.1074/jbc.M111.245456
  • Qian Y, Wertheimer SJ, Ahmad M, et al. Discovery of orally active carboxylic acid derivatives of 2-phenyl-5-trifluoromethyloxazole-4-carboxamide as potent diacylglycerol acyltransferase-1 inhibitors for the potential treatment of obesity and diabetes. J Med Chem. 2011;54(7):2433–2446. doi:10.1021/jm101580m
  • Waring MJ, Birch AM, Birtles S, et al. Optimisation of biphenyl acetic acid inhibitors of diacylglycerol acetyl transferase 1–the discovery of AZD2353. MedChemComm. 2013;4(1):159–164. doi:10.1039/C2MD20190A
  • Peguero JG, Arenas I, Lamas GA. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients. Trends Cardiovasc Med. 2014;24(6):232–240. doi:10.1016/j.tcm.2014.06.002
  • Qiu Q, Zhang F, Zhu W, Wu J, Liang M. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol Trace Elem Res. 2017;177(1):53–63. doi:10.1007/s12011-016-0877-y
  • Frizzell N, Baynes JW. Chelation therapy for the management of diabetic complications: a hypothesis and a proposal for clinical laboratory assessment of metal ion homeostasis in plasma. Clin Chem Lab Med. 2014;52(1):69–75. doi:10.1515/cclm-2012-0881
  • Gong D, Lu J, Chen X, et al. A copper (II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-β activation in the kidneys of rats used as a model of diabetes. Diabetologia. 2008;51(9):1741–1751. doi:10.1007/s00125-008-1088-7
  • Tarantino G, Porcu C, Arciello M, Andreozzi P, Balsano C. Prediction of carotid intima–media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J Gastroenterol Hepatol. 2018;33(8):1511–1517. doi:10.1111/jgh.2018.33.issue-8
  • Lu J, Gong D, Choong SY, et al. Copper (II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia. 2010;53(6):1217–1226. doi:10.1007/s00125-010-1698-8
  • JS Cooper G. Selective divalent copper chelation for the treatment of diabetes mellitus. Curr Med Chem. 2012;19(17):2828–2860. doi:10.2174/092986712800609715