422
Views
15
CrossRef citations to date
0
Altmetric
Review

Experimental Pharmacotherapy for Dry Eye Disease: A Review

ORCID Icon & ORCID Icon
Pages 345-358 | Published online: 23 Mar 2021

References

  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–283. doi:10.1016/j.jtos.2017.05.008
  • Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report. Ocul Surf. 2017;15(3):334–365. doi:10.1016/j.jtos.2017.05.003
  • Shimazaki J, Goto E, Ono M, Shimmura S, Tsubota K. Meibomian gland dysfunction in patients with Sjogren syndrome. Ophthalmology. 1998;105(8):1485–1488. doi:10.1016/S0161-6420(98)98033-2
  • Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea. 2012;31(5):472–478. doi:10.1097/ICO.0b013e318225415a
  • Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32(1):19–41. doi:10.3109/08830185.2012.748052
  • Rieger G. The importance of the precorneal tear film for the quality of optical imaging. Br J Ophthalmol. 1992;76(3):157–158. doi:10.1136/bjo.76.3.157
  • Bron AJ, Tomlinson A, Foulks GN, et al. Rethinking dry eye disease: a perspective on clinical implications. Ocul Surf. 2014;12(2 SUPPL.). doi:10.1016/j.jtos.2014.02.002
  • Baudouin C, Messmer EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016;100(3):300–306. doi:10.1136/bjophthalmol-2015-307415
  • Zhang X, Vimalin Jeyalatha M, Qu Y, et al. Dry eye management: targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. doi:10.3390/ijms18071398
  • Willcox MDP, Argüeso P, Georgiev GA, et al. TFOS DEWS II tear film report. Ocul Surf. 2017;15(3):366–403. doi:10.1016/j.jtos.2017.03.006
  • Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438–510. doi:10.1016/j.jtos.2017.05.011
  • Lemp MA, Baudouin C, Baum J, et al. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop (2007). Ocul Surf. 2007;5:75–92. Ethis Communications, Inc. doi:10.1016/s1542-0124(12)70081-2
  • Periman LM, Perez VL, Saban DR, Lin MC, Neri P. The immunological basis of dry eye disease and current topical treatment options. J Ocul Pharmacol Ther. 2020;36(3):137–146. doi:10.1089/jop.2019.0060
  • Heidari M, Noorizadeh F, Wu K, Inomata T, Mashaghi A. Dry eye disease: emerging approaches to disease analysis and therapy. J Clin Med. 2019;8(9):1439. doi:10.3390/jcm8091439
  • De Paiva CS, Corrales RM, Villarreal AL, et al. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83(3):526–535. doi:10.1016/j.exer.2006.02.004
  • Li DQ, Chen Z, Song XJ, Luo L, Pflugfelder SC. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(12):4302–4311. doi:10.1167/iovs.04-0299
  • Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–596. doi:10.1016/j.exer.2005.08.019
  • Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31(5):186–193. doi:10.1097/01.ICL.0000162759.79740.46
  • Lee JH, Kim M, Im YS, Choi W, Byeon SH, Lee HK. NFAT5 induction and its role in hyperosmolar stressed human limbal epithelial cells. Invest Ophthalmol Vis Sci. 2008;49(5):1827–1835. doi:10.1167/iovs.07-1142
  • Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45(12):4293–4301. doi:10.1167/iovs.03-1145
  • Baudouin C. The pathology of dry eye. Surv Ophthalmol. 2001;45(SUPPL. 2):S211–S220. doi:10.1016/S0039-6257(00)00200-9
  • Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44(1):124–129. doi:10.1167/iovs.02-0581
  • Schaumburg CS, Siemasko KF, De Paiva CS, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol. 2011;187(7):3653–3662. doi:10.4049/jimmunol.1101442
  • Zhang X, Volpe EA, Gandhi NB, et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012;7(5). doi:10.1371/journal.pone.0036822
  • Strauss-Albee DM, Horowitz A, Parham P, Blish CA. Coordinated regulation of NK receptor expression in the maturing human immune system. J Immunol. 2014;193(10):4871–4879. doi:10.4049/jimmunol.1401821
  • Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130(1):90–100. doi:10.1001/archophthalmol.2011.364
  • Hamrah P, Liu Y, Zhang Q, Dana MR. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol. 2003;121(8):1132–1140. doi:10.1001/archopht.121.8.1132
  • El Annan J, Chauhan SK, Ecoiffier T, Zhang Q, Saban DR, Dana R. Characterization of effector T cells in dry eye disease. Invest Ophthalmol Vis Sci. 2009;50(8):3802–3807. doi:10.1167/iovs.08-2417
  • Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY, Pflugfelder SC. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol. 2010;3(5):425–442. doi:10.1038/mi.2010.26
  • Bron AJ, Yokoi N, Gaffney E, Tiffany JM. Predicted phenotypes of dry eye: proposed consequences of its natural history. Ocul Surf. 2009;7(2):78–92. doi:10.1016/S1542-0124(12)70299-9
  • Barabino S, Chen Y, Chauhan S, Dana R. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res. 2012;31(3):271–285. doi:10.1016/j.preteyeres.2012.02.003
  • Belmonte C, Nichols JJ, Cox SM, et al. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15(3):404–437. doi:10.1016/j.jtos.2017.05.002
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628. doi:10.1016/j.jtos.2017.05.006
  • Şimşek C, Doğru M, Kojima T, Tsubota K. Current management and treatment of dry eye disease. Turk J Ophthalmol. 2018;48(6):309–313. doi:10.4274/tjo.69320
  • Rouen PA, White ML. Dry eye disease: prevalence, assessment, and management. Home Healthc. 2018;36(2):74–83. doi:10.1097/NHH.0000000000000652
  • Lallemand F, Schmitt M, Bourges JL, Gurny R, Benita S, Garrigue JS. Cyclosporine A delivery to the eye: a comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm. 2017;117:14–28. doi:10.1016/j.ejpb.2017.03.006
  • Agarwal P, Craig JP, Rupenthal ID. Formulation considerations for the management of dry eye disease. Pharmaceutics. 2021;13(2):207. doi:10.3390/pharmaceutics13020207
  • Periman LM, Mah FS, Karpecki PM. A review of the mechanism of action of cyclosporine A: the role of cyclosporine a in dry eye disease and recent formulation developments. Clin Ophthalmol. 2020;14:4187–4200. doi:10.2147/OPTH.S279051
  • Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder S. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease - PubMed. Invest Ophthalmol Vis Sci. 2001;42(10):2283–2292.
  • Yamada J, Zhu S-N, Streilein W, Dana R. Interleukin-1 receptor antagonist therapy and induction of anterior chamber–associated immune deviation–type tolerance after corneal transplantation. Invest Ophthalmol Vis Sci. 2000;41:4203–4208.
  • Keane-Myers A, Miyazaki D, Dekaris I, Ono S, Dana M. Prevention of allergic eye disease by treatment with IL-1 receptor antagonist - PubMed. Invest Ophthalmol Vis Sci. 1999;40(12):3014–3016.
  • Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res. 2003;76(2):161–167. doi:10.1016/S0014-4835(02)00293-2
  • Amparo F, Dastjerdi MH, Okanobo A, et al. Topical interleukin 1 receptor antagonist for treatment of dry eye disease: a randomized clinical trial. JAMA Ophthalmol. 2013;131(6):715–723. doi:10.1001/jamaophthalmol.2013.195
  • Hou J, Townson SA, Kovalchin JT, et al. Design of a superior cytokine antagonist for topical ophthalmic use. Proc Natl Acad Sci U S A. 2013;110(10):3913–3918. doi:10.1073/pnas.1217996110
  • Kovalchin J, King B, Masci A, et al. Preclinical development of EBI-005: an IL-1 receptor-1 inhibitor for the topical ocular treatment of ocular surface inflammatory diseases. Eye Contact Lens. 2018;44(3):170–181. doi:10.1097/ICL.0000000000000414
  • Joossen C, Baán A, Moreno-Cinos C, et al. A novel serine protease inhibitor as potential treatment for dry eye syndrome and ocular inflammation. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-74159-w
  • Joossens J, Ali OM, El-Sayed I, et al. Small, potent, and selective diaryl phosphonate inhibitors for urokinase-type plasminogen activator with in vivo antimetastatic properties. J Med Chem. 2007;50(26):6638–6646. doi:10.1021/jm700962j
  • Ceuleers H, Hanning N, Heirbaut J, et al. Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome. Br J Pharmacol. 2018;175(17):3516–3533. doi:10.1111/bph.14396
  • Dattoli SD, Baiula M, De Marco R, et al. DS-70, a novel and potent α4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol. 2018;175(20):3891–3910. doi:10.1111/bph.14458
  • Qasem AR, Bucolo C, Baiula M, et al. Contribution of α4β1 integrin to the antiallergic effect of levocabastine. Biochem Pharmacol. 2008;76(6):751–762. doi:10.1016/j.bcp.2008.07.007
  • Haber SL, Benson V, Buckway CJ, Gonzales JM, Romanet D, Scholes B. Lifitegrast: a novel drug for patients with dry eye disease. Ther Adv Ophthalmol. 2019;11:2515841419870366. doi:10.1177/2515841419870366
  • Donnenfeld ED, Perry HD, Nattis AS, Rosenberg ED. Lifitegrast for the treatment of dry eye disease in adults. Expert Opin Pharmacother. 2017;18(14):1517–1524. doi:10.1080/14656566.2017.1372748
  • Baiula M, Spampinato S, Gentilucci L, Tolomelli A. Novel ligands targeting α4β1 integrin: therapeutic applications and perspectives. Front Chem. 2019;7:489. doi:10.3389/fchem.2019.00489
  • Ecoiffier T, El Annan J, Rashid S, Schaumberg D, Dana R. Modulation of integrin α4 β1 (VLA-4) in dry eye disease. Arch Ophthalmol. 2008;126(12):1695–1699. doi:10.1001/archopht.126.12.1695
  • Krauss AH, Corrales RM, Pelegrino FSA, Tukler-Henriksson J, Pflugfelder SC, de Paiva CS. Improvement of outcome measures of dry eye by a novel integrin antagonist in the murine desiccating stress model. Invest Ophthalmol Vis Sci. 2015;56(10):5888–5895. doi:10.1167/iovs.15-17249
  • Contreras-Ruiz L, Mir FA, Turpie B, Krauss AH, Masli S. Sjögren’s syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090. Exp Eye Res. 2016;143:1–8. doi:10.1016/j.exer.2015.10.008
  • Hesselink JMK, Chiosi F, Costagliola C. Resolvins and aliamides: lipid autacoids in ophthalmology – what promise do they hold? Drug Des Devel Ther. 2016;10:3133–3141. doi:10.2147/DDDT.S112389
  • Ji RR, Xu ZZ, Strichartz G, Serhan CN. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 2011;34(11):599–609. doi:10.1016/j.tins.2011.08.005
  • Dartt DA, Hodges RR, Li D, Shatos MA, Lashkari K, Serhan CN. Conjunctival goblet cell secretion stimulated by leukotrienes is reduced by resolvins D1 and E1 to promote resolution of inflammation. J Immunol. 2011;186(7):4455–4466. doi:10.4049/jimmunol.1000833
  • Li N, He J, Schwartz CE, Gjorstrup P, Bazan HEP. Resolvin E1 improves tear production and decreases inflammation in a dry eye mouse model. J Ocul Pharmacol Ther. 2010;26(5):431–439. doi:10.1089/jop.2010.0019
  • Schwartz CE, Savinainen A, Gjorstrup P. Resolvin analogs with pharmacokinetic properties suitable for topical administration to treat ocular diseases. Invest Ophthalmol Vis Sci. 2008;49(5):3179.
  • Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016;498(1–2):326–334. doi:10.1016/j.ijpharm.2015.12.037
  • Gjorstrup P, Pflugfelder SP, Pangelinan S, De Paiva CS. Resolvins protect against goblet cell loss and reduce corneal epithelial barrier disruption in a murine model of KCS. Invest Ophthalmol Vis Sci. 2008;122.
  • Li N, He J, Gjorstrup P, Bazan H. The resolvin E1 analogs, RX-10065 and RX-10005 improve tear production and decrease inflammation in a mouse dry eye model. Invest Ophthalmol Vis Sci. 2008;49:121.
  • Zhang F, Yang H, Pan Z, et al. Dependence of resolvin-induced increases in corneal epithelial cell migration on EGF receptor transactivation. Invest Ophthalmol Vis Sci. 2010;51(11):5601–5609. doi:10.1167/iovs.09-4468
  • Downie LE, Ng SM, Lindsley KB, Akpek EK. Omega-3 and omega-6 polyunsaturated fatty acids for dry eye disease. Cochrane Database Syst Rev. 2019;2019(12). doi:10.1002/14651858.CD011016.pub2
  • Schmidt TA, Sullivan DA, Knop E, et al. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol. 2013;131(6):766–776. doi:10.1001/jamaophthalmol.2013.2385
  • Lambiase A, Sullivan BD, Schmidt TA, et al. A two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul Surf. 2017;15(1):77–87. doi:10.1016/j.jtos.2016.08.004
  • Hou LF, He SJ, Li X, et al. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum. 2011;63(8):2445–2455. doi:10.1002/art.30392
  • Yan YX, Shao MJ, Qi Q, et al. Artemisinin analogue SM934 ameliorates DSS-induced mouse ulcerative colitis via suppressing neutrophils and macrophages. Acta Pharmacol Sin. 2018;39(10):1633–1644. doi:10.1038/aps.2017.185
  • Hou LF, He SJ, Li X, et al. Sm934 treated lupus-prone NZB×NZW F 1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T cell development. PLoS One. 2012;7(2):e32424. doi:10.1371/journal.pone.0032424
  • Yang FM, Fan D, Yang XQ, et al. The artemisinin analog SM934 alleviates dry eye disease in rodent models by regulating TLR4/NF-κB/NLRP3 signaling. Acta Pharmacol Sin. 2020. doi:10.1038/s41401-020-0484-5
  • Skulachev VP. Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun. 2013;441(2):275–279. doi:10.1016/j.bbrc.2013.10.063
  • Wei Y, Troger A, Spahiu V, et al. The role of SKQ1 (Visomitin) in inflammation and wound healing of the ocular surface. Ophthalmol Ther. 2019;8(1):63–73. doi:10.1007/s40123-018-0158-2
  • Zernii EY, Gancharova OS, Baksheeva VE, et al. Mitochondria-targeted antioxidant SkQ1 prevents anesthesia-induced dry eye syndrome. Oxid Med Cell Longev. 2017;2017:1–17. doi:10.1155/2017/9281519
  • Voronkova YG, Popova TN, Agarkov AA, Zinovkin RA. Effect of SkQ1 on activity of the glutathione system and NADPH-generating enzymes in an experimental model of hyperglycemia. Biochem. 2015;80(12):1614–1621. doi:10.1134/S000629791512010X
  • Brzheskiy VV, Efimova EL, Vorontsova TN, et al. Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of visomitin eye drops in patients with dry eye syndrome. Adv Ther. 2015;32(12):1263–1279. doi:10.1007/s12325-015-0273-6
  • Gutierrez LS, Lopez-Dee Z, Pidcock K. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm. 2011;2011. doi:10.1155/2011/296069.
  • Wight TN, Raugi GJ, Mumby SM, Bornstein P. Light microscopic immunolocation of thrombospondin in human tissues. J Histochem Cytochem. 1985;33(4):295–302. doi:10.1177/33.4.3884704
  • Grimbert P, Bouguermouh S, Baba N, et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4 + CD25 − T cells in response to inflammation. J Immunol. 2006;177(6):3534–3541. doi:10.4049/jimmunol.177.6.3534
  • Doyen V, Rubio M, Braun D, et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med. 2003;198(8):1277–1283. doi:10.1084/jem.20030705
  • Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6(1):41–48. doi:10.1038/71517
  • Saban DR, Bock F, Chauhan SK, Masli S, Dana R. Thrombospondin-1 derived from APCs regulates their capacity for allosensitization. J Immunol. 2010;185(8):4691–4697. doi:10.4049/jimmunol.1001133
  • Sekiyama E, Nakamura T, Cooper LJ, et al. Unique distribution of thrombospondin-1 in human ocular surface epithelium. Invest Ophthalmol Vis Sci. 2006;47(4):1352–1358. doi:10.1167/iovs.05-1305
  • Anshoo C, Paul H, Hart Charles A, Kaye Stephen B, Mark B, Ian G. Suppression of thrombospondin 1 and 2 production by herpes simplex virus 1 infection in cultured keratocytes - PubMed. Mol Vis. 2005;11:163–168.
  • Scheef EA, Huang Q, Wang S, Sorenson CM, Sheibani N. Isolation and characterization of corneal endothelial cells from wild type and thrombospondin-1 deficient mice. Mol Vis. 2007;13:1483–1495.
  • Turpie B, Yoshimura T, Gulati A, Rios JD, Dartt DA, Masli S. Sjögren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice. Am J Pathol. 2009;175(3):1136–1147. doi:10.2353/ajpath.2009.081058
  • Tan X, Chen Y, Foulsham W, et al. The immunoregulatory role of corneal epithelium-derived thrombospondin-1 in dry eye disease. Ocul Surf. 2018;16(4):470–477. doi:10.1016/j.jtos.2018.07.005
  • Ruiz-Ederra J, Levin MH, Verkman AS. In situ fluorescence measurement of tear film [Na+], [K+], [Cl-], and pH in mice shows marked hypertonicity in aquaporin-5 deficiency. Invest Ophthalmol Vis Sci. 2009;50(5):2132–2138. doi:10.1167/iovs.08-3033
  • Levin MH, Jung KK, Hu J, Verkman AS. Potential difference measurements of ocular surface Na+ absorption analyzed using an electrokinetic model. Invest Ophthalmol Vis Sci. 2006;47(1):306–316. doi:10.1167/iovs.05-1082
  • Levin MH, Verkman AS. CFTR-regulated chloride transport at the ocular surface in living mice measured by potential differences. Invest Ophthalmol Vis Sci. 2005;46(4):1428–1434. doi:10.1167/iovs.04-1314
  • Hara S, Hazama A, Miyake M, et al. The effect of topical amiloride eye drops on tear quantity in rabbits - PubMed. Mol Vis. 2010;16:2279–2285.
  • Mirshahi M, Nicolas C, Mirshahi S, Golestaneh N, D’Hermies F, Agarwal MK. Immunochemical analysis of the sodium channel in rodent and human eye. Exp Eye Res. 1999;69(1):21–32. doi:10.1006/exer.1999.0675
  • Thelin WR, Johnson MR, Hirsh AJ, Kublin CL, Zoukhri D. Effect of topically applied epithelial sodium channel inhibitors on tear production in normal mice and in mice with induced aqueous tear deficiency. J Ocul Pharmacol Ther. 2012;28(4):433–438. doi:10.1089/jop.2011.0157
  • Boyer J, Johnson MR, Ansede J, Donn K, Boucher R, Thelin W. P-321, a novel long-acting epithelial sodium channel (ENaC) blocker for the treatment of dry eye disease. Invest Ophthalmol Vis Sci. 2013;54(15):957.
  • Yang JM, Wei ET, Kim SJ, Yoon KC. TRPM8 channels and dry eye. Pharmaceuticals. 2018;11(4):125. doi:10.3390/ph11040125
  • González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent progress in TRPM8 modulation: an update. Int J Mol Sci. 2019;20(11):2618. doi:10.3390/ijms20112618
  • Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci. 2012;3(4):248–267. doi:10.1021/cn300006u
  • Sherkheli MA, Vogt-Eisele AK, Bura D, Beltrán Márques LR, Gisselmann G, Hatt H. Characterization of selective trpm8 l igands and their structure activity response (S.A.R) relationship. J Pharm Pharm Sci. 2010;13(2):242–253. doi:10.18433/j3n88n
  • Parra A, Madrid R, Echevarria D, et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med. 2010;16(12):1396–1399. doi:10.1038/nm.2264
  • Chen G-L, Lei M, Zhou L-P, Zeng B, Zou F, Xu S-Z. Borneol is a TRPM8 agonist that increases ocular surface wetness. PLoS One. 2016;11(7):e0158868. doi:10.1371/journal.pone.0158868
  • Yang JM, Li F, Liu Q, et al. A novel TRPM8 agonist relieves dry eye discomfort. BMC Ophthalmol. 2017;17(1). doi:10.1186/s12886-017-0495-2
  • Yoon HJ, Kim J, Yang JM, Wei ET, Kim SJ, Yoon KC. Topical TRPM8 agonist for relieving neuropathic ocular pain in patients with dry eye: a pilot study. J Clin Med. 2021;10(2):250. doi:10.3390/jcm10020250
  • Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee SY. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science. 2019;363(6430):eaav9334. doi:10.1126/science.aav9334
  • Rodríguez-Arévalo S, Pujol E, Abás S, Galdeano C, Escolano C, Vázquez S. Synthesis, characterization and HPLC analysis of the (1S,2S,5R)-diastereomer and the enantiomer of the clinical candidate AR-15512. Molecules. 2021;26(4):906. doi:10.3390/molecules26040906
  • Moreno-Montañés J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs. 2018;27(4):421–426. doi:10.1080/13543784.2018.1457647
  • Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev. 2014;94(1):81–140. doi:10.1152/physrev.00023.2013
  • Gonzalez G, Garcia de la Rubia P, Gallar J, Belmonte C. Reduction of capsaicin-induced ocular pain and neurogenic inflammation by calcium antagonists. Invest Ophthalmol Vis Sci. 1993;34(12):3329–3335.
  • Benitez-Del-Castillo JM, Moreno-Montañés J, Jiménez-Alfaro I, et al. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(14):6447–6454. doi:10.1167/iovs.16-20303
  • Giannaccare G, Carnevali A, Senni C, Logozzo L, Scorcia V. Umbilical cord blood and serum for the treatment of ocular diseases: a comprehensive review. Ophthalmol Ther. 2020;9(2):235–248. doi:10.1007/s40123-020-00239-9
  • Soni NG, Jeng BH. Blood-derived topical therapy for ocular surface diseases. Br J Ophthalmol. 2016;100(1):22–27. doi:10.1136/bjophthalmol-2015-306842
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–736. doi:10.1038/nri2395
  • Lu X, Li N, Zhao L, et al. Human umbilical cord mesenchymal stem cells alleviate ongoing autoimmune dacryoadenitis in rabbits via polarizing macrophages into an anti-inflammatory phenotype. Exp Eye Res. 2020;191:107905. doi:10.1016/j.exer.2019.107905
  • Lee MJ, Ko AY, Ko JH, et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Mol Ther. 2015;23(1):139–146. doi:10.1038/mt.2014.159
  • Weng J, He C, Lai P, et al. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease. Mol Ther. 2012;20(12):2347–2354. doi:10.1038/mt.2012.208
  • Sáles CS, Johnston LJ, Ta CN. Long-term clinical course of dry eye in patients with chronic graft-versus-host disease referred for eye examination. Cornea. 2011;30(2):143–149. doi:10.1097/ICO.0b013e3181e9b3bf