228
Views
11
CrossRef citations to date
0
Altmetric
Review

MET Inhibitors for the Treatment of Gastric Cancer: What’s Their Potential?

, ORCID Icon & ORCID Icon
Pages 349-361 | Published online: 06 Oct 2020

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
  • Howson CP, Hiyama T, Wynder EL. THE DECLINE IN GASTRIC CANCER: EPIDEMIOLOGY OF AN UNPLANNED TRIUMPH. Epidemiol Rev. 1986;8(1):1–27. doi:10.1093/oxfordjournals.epirev.a036288
  • Bosetti C, Bertuccio P, Levi F, et al. Cancer mortality in the European Union, 1970-2003, with a joinpoint analysis. Ann Oncol. 2008;19(4):631–640. doi:10.1093/annonc/mdm597
  • Bass AJ, Thorsson V, Shmulevich I, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209.
  • Waddell T, Chau I, Cunningham D, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label Phase 3 trial. Lancet Oncol. 2013;14(6):481–489. doi:10.1016/S1470-2045(13)70096-2
  • Guimbaud R, Louvet C, Ries P, et al. Prospective, Randomized, Multicenter, Phase III Study of Fluorouracil, Leucovorin, and Irinotecan Versus Epirubicin, Cisplatin, and Capecitabine in Advanced Gastric Adenocarcinoma: A French Intergroup (Fédération Francophone de Cancérologie Digestive, Fédération Nationale des Centres de Lutte Contre le Cancer, and Groupe Coopérateur Multidisciplinaire en Oncologie) Study. J clin oncol. 2014;32:3520–3526.
  • Le DT, Ott PA, Korytowsky B, et al. Real-world Treatment Patterns and Clinical Outcomes Across Lines of Therapy in Patients With Advanced/Metastatic Gastric or Gastroesophageal Junction Cancer. Clin Colorectal Cancer. 2020;19(32–38.e3):32–38.e3. doi:10.1016/j.clcc.2019.09.001
  • Cancer Stat Facts: Stomach Cancer. Available at: https://seer.cancer.gov/statfacts/html/stomach.html. Acessed May 13, 2020.
  • Deng N, Goh LK, Wang H, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–684.
  • Bang Y, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–697. doi:10.1016/S0140-6736(10)61121-X
  • Chen C, Kim H, Liska D, et al. MET Activation Mediates Resistance to Lapatinib Inhibition of HER2-Amplified Gastric Cancer Cells. Mol Cancer Ther. 2012;11(3):660–669. doi:10.1158/1535-7163.MCT-11-0754
  • Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell. United States: Elsevier Inc; 2000.
  • Zhang Y, Vande Woude GF. HGF/SF‐met signaling in the control of branching morphogenesis and invasion. J Cell Biochem. 2003;88(2):408–417. doi:10.1002/jcb.10358
  • Appleman LJ. MET Signaling Pathway: A Rational Target for Cancer Therapy. J clin oncol. 2011;29(36):4837–4838. doi:10.1200/JCO.2011.37.7929
  • Komada M, Hatsuzawa K, Shibamoto S, et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993;328(1–2):25–29. doi:10.1016/0014-5793(93)80958-W
  • Vande Woude GF, Birchmeier C, Gherardi E, Birchmeier W. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–925. doi:10.1038/nrm1261
  • Liu X, Newton RC, Scherle PA. Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med. 2009;16(1):37–45. doi:10.1016/j.molmed.2009.11.005
  • Bradley CA, Salto-Tellez M, Laurent-Puig P, et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2017;14:562–576.
  • Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103.
  • Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13(3):272. doi:10.1016/j.ccr.2008.02.013
  • Wiggan O, Taniguchi-Sidle A, Hamel PA. Interaction of the pRB-family proteins with factors containing paired-like homeodomains. Oncogene. 1998;16(2):227–236. doi:10.1038/sj.onc.1201534
  • Hammond DE, Urbé S, Vande Woude GF, Clague MJ. Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene. 2001;20(22):2761–2770. doi:10.1038/sj.onc.1204475
  • Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–361. doi:10.1016/S1535-6108(03)00085-0
  • Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Translat Med. 2018;6(12):247. doi:10.21037/atm.2018.04.42
  • Janjigian YY, Tang LH, Coit DG, et al. MET Expression and Amplification in Patients with Localized Gastric Cancer. Cancer Epidemiol Biomarkers Prevent. 2011;20(5):1021–1027. doi:10.1158/1055-9965.EPI-10-1080
  • Lee HE, Kim MA, Lee HS, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107(2):325–333. doi:10.1038/bjc.2012.237
  • Sun Y, Tian -M-M, Zhou L-X, You W-C, Li J-Y. Value of c-Met for Predicting Progression of Precancerous Gastric Lesions in Rural Chinese Population. Chin J Cancer Res. 2012;24(1):18–22. doi:10.1007/s11670-012-0018-x
  • Retterspitz MF, Mönig SP, Schreckenberg S, et al. Expression of {beta}-catenin, MUC1 and c-met in diffuse-type gastric carcinomas: correlations with tumour progression and prognosis. Anticancer Res. 2010;30:4635.
  • Guo T, Yang J, Yao J, et al. Expression of MACC1 and c-Met in human gastric cancer and its clinical significance. Cancer Cell Int. 2013;13(1):121. doi:10.1186/1475-2867-13-121
  • Liu YJ, Shen D, Yin X, et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer. 2014;110(5):1169–1178. doi:10.1038/bjc.2014.61
  • Kwak EL, Ahronian LG, Siravegna G, et al. Molecular Heterogeneity and Receptor Coamplification Drive Resistance to Targeted Therapy in MET-Amplified Esophagogastric Cancer. Cancer Discov. 2015;5(12):1271–1281. doi:10.1158/2159-8290.CD-15-0748
  • Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–486.
  • Kim J, Fox C, Peng S, et al. Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma. J Clin Invest. 2014;124(12):5145–5158. doi:10.1172/JCI75200
  • Zhang J, Jiang X, Jiang Y, et al. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. European Journal of Medicinal Chemistry. 2016; 108:495-504.
  • Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between Epidermal Growth Factor Receptor and c-Met Signal Pathways in Transformed Cells. J Biol Chem. 2000;275:8806–8811
  • Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 2018;17:45.
  • Huang K, Sung I, Fang W, et al. Correlation between HGF/c-Met and Notch1 signaling pathways in human gastric cancer cells. Oncol Rep. 2018;40:294–302.
  • Wang H, Rao B, Lou J, et al. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Fron Cell Dev Biol. 2020;8:55.
  • Timothy A, Olmos D, Andre T, et al. Phase I Trial of a Selective c-MET Inhibitor ARQ 197 Incorporating Proof of Mechanism Pharmacodynamic Studies. J Clin Oncol. 2011;29(10):1271–1279. doi:10.1200/JCO.2010.31.0367
  • Kang Y, Kang Y, Muro K, et al. A phase II trial of a selective c-Met inhibitor tivantinib (ARQ 197) monotherapy as a second- or third-line therapy in the patients with metastatic gastric cancer. Invest New Drugs. 2014;32(2):355–361. doi:10.1007/s10637-013-0057-2
  • Hong DS, LoRusso P, Hamid O, et al. Phase I Study of AMG 337, a Highly Selective Small-molecule MET Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2019;25(8):2403–2413. doi:10.1158/1078-0432.CCR-18-1341
  • Van Cutsem E, Karaszewska B, Kang Y, et al. A Multicenter Phase II Study of AMG 337 in Patients with MET -Amplified Gastric/Gastroesophageal Junction/Esophageal Adenocarcinoma and Other -Amplified Solid Tumors. Clin Cancer Res. 2019;25(8):2414–2423. doi:10.1158/1078-0432.CCR-18-1337
  • Gavine PR, Ren Y, Han L, et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol Oncol. 2015;9(1):323–333. doi:10.1016/j.molonc.2014.08.015
  • Lee J, Kim ST, Kim K, et al. Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: the VIKTORY Umbrella Trial. Cancer Discov. 2019;9:1388–1405.
  • Park CH, Cho SY, Ha JD, et al. Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer. 2016;16(1):35. doi:10.1186/s12885-016-2058-y
  • Sohn S, Kim B, Sul HJ, Choi BY, Kim HS, Zang DY. Foretinib Inhibits Cancer Stemness and Gastric Cancer Cell Proliferation by Decreasing CD44 and c-MET Signaling. Onco Targets Ther. 2020;13:1027–1035. doi:10.2147/OTT.S226951
  • Awasthi N, Grojean M, Monahan S, et al. Abstract 5807: the dual c-Met/VEGFR2 inhibitor foretinib augments chemotherapy response in preclinical models of gastric cancer. Cancer Res. 2018;78:5807.
  • Shah MA, Wainberg ZA, Catenacci DVT, et al. Phase II Study Evaluating 2 Dosing Schedules of Oral Foretinib (GSK1363089), cMET/VEGFR2 Inhibitor, in Patients with Metastatic Gastric Cancer. PLoS One. 2013;8(3):e54014. doi:10.1371/journal.pone.0054014
  • Jochen K, Eunice L, Ackerman A, et al. MET Amplification Identifies a Small and Aggressive Subgroup of Esophagogastric Adenocarcinoma With Evidence of Responsiveness to Crizotinib. J Clin Oncol. 2011;29(36):4803–4810. doi:10.1200/JCO.2011.35.4928
  • Lee J, Pilot A Study of Crizotinib in Patients With c-MET Positive Gastric Adenocarcinoma as a Third-line Chemotherapy. nct; 2015. Available from: https://www.openaire.eu/search/dataset?datasetId=opentrials__::e30647408d8fe4bc48c26469d3c9de88. Accessed September 10, 2020.
  • Iveson T, Donehower R, Davidenko I, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation Phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014;15(9):1007–1018. doi:10.1016/S1470-2045(14)70023-3
  • Catenacci DVT, Tebbutt NC, Davidenko I, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(11):1467–1482. doi:10.1016/S1470-2045(17)30566-1
  • A phase 3 study of rilotumumab (AMG 102) with cisplatin and capecitabine (CX) as first-line therapy in gastric cancer (RILOMET-2). Available at: https://www.clinicaltrials.gov/ct2/manage-recs/fdaaa. Accessed May, 15, 2020.
  • Malka D, François E, Penault-Llorca F, et al. FOLFOX alone or combined with rilotumumab or panitumumab as first-line treatment for patients with advanced gastroesophageal adenocarcinoma (PRODIGE 17-ACCORD 20-MEGA): a randomised, open-label, three-arm phase II trial. Eur J Cancer. 2019;115:97–106. doi:10.1016/j.ejca.2019.04.020
  • David R, Thomas J, Rodryg A, et al. Randomized Phase II Trial of Onartuzumab in Combination With Erlotinib in Patients With Advanced Non–Small-Cell Lung Cancer. J Clin Oncol. 2013;31:4105–4114. doi:10.1200/JCO.2012.47.4189
  • Shah MA, Cho J, Tan IB, et al. A Randomized Phase II Study of FOLFOX With or Without the MET Inhibitor Onartuzumab in Advanced Adenocarcinoma of the Stomach and Gastroesophageal Junction. Oncologist. 2016;21:1085–1090. doi:10.1634/theoncologist.2016-0038
  • Shah MA, Bang Y, Lordick F, et al. Effect of Fluorouracil, Leucovorin, and Oxaliplatin With or Without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma: the METGastric Randomized Clinical Trial. JAMA Oncol. 2017;3(5):620–627. doi:10.1001/jamaoncol.2016.5580
  • Sakai D, Chung HC, Oh D, et al. A non-randomized, open-label, single-arm, Phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer. Cancer Chemother Pharmacol. 2017;80(6):1197–1207. doi:10.1007/s00280-017-3445-z
  • Tabernero J, Elez ME, Herranz M, et al. A Pharmacodynamic/Pharmacokinetic Study of Ficlatuzumab in Patients with Advanced Solid Tumors and Liver Metastases. Clin Cancer Res. 2014;20:2793–2804.
  • Jones SF, Cohen RB, Bendell JC, et al. Safety, tolerability, and pharmacokinetics of TAK-701, a humanized anti-hepatocyte growth factor (HGF) monoclonal antibody, in patients with advanced nonhematologic malignancies: first-in-human phase I dose-escalation study. J Clin Oncol. 2010;28(15_suppl):3081. doi:10.1200/jco.2010.28.15_suppl.3081
  • Strickler JH, LoRusso P, Yen C, et al. Phase 1, open-label, dose-escalation, and expansion study of ABT-700, an anti-C-met antibody, in patients (pts) with advanced solid tumors. J Clin Oncol. 2014;32(15_suppl):2507. doi:10.1200/jco.2014.32.15_suppl.2507
  • Kim HS, Chon HJ, Kim H, et al. MET in gastric cancer with liver metastasis: the relationship between MET amplification and Met overexpression in primary stomach tumors and liver metastasis. J Surg Oncol. 2018;117(8):1679–1686. doi:10.1002/jso.25097
  • Marano L, Chiari R, Fabozzi A, et al. c-Met targeting in advanced gastric cancer: an open challenge. Cancer Lett. 2015;365(1):30–36. doi:10.1016/j.canlet.2015.05.028
  • Mark Y, Sun MY, Chen C-T, et al. HER kinase activation confers resistance to MET tyrosine kinase inhibition in MET oncogene-addicted gastric cancer cells. Mol Cancer Ther. 2008;7(11):3499–3508. doi:10.1158/1535-7163.MCT-08-0374
  • Khoury H, Naujokas MA, Zuo D, et al. HGF Converts ErbB2/Neu Epithelial Morphogenesis to Cell Invasion. Mol Biol Cell. 2005;16(2):550–561. doi:10.1091/mbc.e04-07-0567
  • Qi J, McTigue MA, Rogers A, et al. Multiple Mutations and Bypass Mechanisms Can Contribute to Development of Acquired Resistance to MET Inhibitors. Cancer Res. 2011;71(3):1081–1091. doi:10.1158/0008-5472.CAN-10-1623
  • Frigault MM, Markovets A, Nuttall B, et al. Mechanisms of Acquired Resistance to Savolitinib, a Selective MET Inhibitor in MET-Amplified Gastric Cancer. In: JCO Precision Oncology. 2020:222–232.
  • Baldacci S, Kherrouche Z, Descarpentries C, et al. MET exon 14 splicing sites mutations: A new therapeutic opportunity in lung cancer. Rev Mal Respir. 2018;35:796. doi:10.1016/j.rmr.2018.01.011
  • Huang X, Li E, Shen H, et al. Targeting the HGF/MET Axis in Cancer Therapy: challenges in Resistance and Opportunities for Improvement. Fron Cell Dev Biol. 2020;8:152. doi:10.3389/fcell.2020.00152
  • Li A, Yang J, Zhang X, et al. Acquired MET Y1248H and D1246N Mutations Mediate Resistance to MET Inhibitors in Non-Small Cell Lung Cancer. Clin Cancer Res. 2017;23:4929–4937. doi:10.1158/1078-0432.CCR-16-3273
  • McCall-Culbreath KD, Li Z, Zutter MM. Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood. 2008;111:3562.
  • Singhal E, Sen P. Hepatocyte growth factor-induced c-Src-phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway inhibits dendritic cell activation by blocking IκB kinase activity. Int J Biochem Cell Biol. 2011;43(8):1134–1146. doi:10.1016/j.biocel.2011.04.006
  • Finisguerra V, Di Conza G, Di Matteo M, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522(7556):349–353. doi:10.1038/nature14407
  • Martin V, Chiriaco C, Modica C, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120(5):527–536. doi:10.1038/s41416-018-0315-3
  • Benkhoucha M, Molnarfi N, Dunand-Sauthier I, et al. Hepatocyte Growth Factor Limits Autoimmune Neuroinflammation via Glucocorticoid-Induced Leucine Zipper Expression in Dendritic Cells. J Immunol. 2014;193(6):2743–2752. doi:10.4049/jimmunol.1302338
  • Zucali PA, Ruiz MG, Giovannetti E, et al. Role of cMET expression in non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Ann Oncol. 2008;19(9):1605–1612. doi:10.1093/annonc/mdn240
  • Fuchs, Charles S, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383(9911):31–39. doi:10.1016/S0140-6736(13)61719-5
  • Wilke H, Muro K, Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–1235.
  • Chen X, Guan Z, Lu J, et al. Synergistic antitumor effects of cMet inhibitor in combination with anti-VEGF in colorectal cancer patient-derived xenograft models. J Cancer. 2018;9(7):1207–1217. doi:10.7150/jca.20964
  • Humbert M, Medová M, Aebersold DM, et al. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells. Biochem Biophys Res Commun. 2013;431(2):264–269. doi:10.1016/j.bbrc.2012.12.120
  • Schroeder RD, Choi W, Hong DS, McConkey DJ. Autophagy is required for crizotinib-induced apoptosis in MET-amplified gastric cancer cells. Oncotarget. 2017;8(31):51675–51687. doi:10.18632/oncotarget.18386
  • Lin X, Peng Z, Wang X, et al. Targeting autophagy potentiates antitumor activity of Met-TKIs against Met-amplified gastric cancer. Cell Death Dis. 2019;10(2):139. doi:10.1038/s41419-019-1314-x
  • Pant S, Patel M, Kurkjian C, et al. A Phase II Study of the c-Met Inhibitor Tivantinib in Combination with FOLFOX for the Treatment of Patients with Previously Untreated Metastatic Adenocarcinoma of the Distal Esophagus, Gastroesophageal Junction, or Stomach. Cancer Invest. 2017;35(7):463–472. doi:10.1080/07357907.2017.1337782
  • Rajdev L, Phase A I and Randomized Phase II Double Blinded Placebo Controlled Study of mFOLFOX6 ± AMG 337 in the First Line Treatment of Patients With Her2/Neu Negative and High MET Expressing Advanced Gastric and Esophageal Adenocarcinoma. nct; 2015. Available from: https://www.openaire.eu/search/dataset?datasetId=opentrials__::bb9210e67017b0a3da1f9eef1cdfe740. Accessed September 10, 2020.
  • Tumors resistant to radiation therapy may be controlled by the MET oncogene. Biotech Week. 2011;20:1550.
  • De Bacco F, Luraghi P, Medico E, et al. Induction of MET by Ionizing Radiation and Its Role in Radioresistance and Invasive Growth of Cancer. JNCI. 2011;103:645–661.
  • Sheng-hua C, Yan-bin M, Zhi-an Z, et al. RETRACTED: radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol. 2007;68:610–613.
  • Qian L, Mizumoto K, Inadome N, et al. Radiation stimulates HGF receptor/c‐Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer. 2003;104:542–549.
  • Todorova PK, Mukherjee B, Burma S. MET signaling promotes DNA repair and radiation resistance in glioblastoma stem-like cells. Ann Translat Med. 2017;5:61.
  • Bhardwaj V, Cascone T, Cortez MA, et al. Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer. 2013;119:1768–1775.
  • Cuneo KC, Mehta RK, Kurapati H, Thomas DG, Lawrence TS, Nyati MK. Enhancing the Radiation Response in KRAS Mutant Colorectal Cancers Using the c-Met Inhibitor Crizotinib. Transl Oncol. 2019;12:209–216.
  • Veenstra C, Pérez-Tenorio G, Fornander T, Skoog L, Nordenskjöld B, Abstract SO. 427: c-Met reduces response to radiation in breast cancer. Cancer Res. 2013;73:427.
  • Chen G, Dai W, Zhu H, et al. Foretinib Enhances the Radiosensitivity in Esophageal Squamous Cell Carcinoma by Inhibiting Phosphorylation of c-Met. J Cancer. 2017;8:983–992.
  • Sun Z, Wu Y, Hou W, et al. A novel bispecific c-MET/PD-1 antibody with therapeutic potential in solid cancer. Oncotarget. 2017;8:29067–29079.
  • Thayaparan T, Petrovic RM, Achkova DY, et al. CAR T-cell immunotherapy of MET-expressing malignant mesothelioma. OncoImmunology. 2017;6:e1363137.
  • Avan A, Quint K, Nicolini F, et al. Enhancement of the Antiproliferative Activity of Gemcitabine by Modulation of c-Met Pathway in Pancreatic Cancer. Curr Pharm Des. 2013;19(5):940–950. doi:10.2174/138161213804547312
  • Chen J. Lentivirus-mediated RNA silencing of c-Met markedly suppresses peritoneal dissemination of gastric cancer in vitro and in vivo. Acta Pharmacol Sin. 2012;33:513–522.
  • Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Fron Cell Dev Biol. 2020;8:145. doi:10.3389/fcell.2020.00145
  • Liu X, Sun R, Chen J, et al. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Fron Cell Dev Biol. 2020;8:23.
  • Zheng Z, Yan D, Chen X, et al. MicroRNA-206: effective Inhibition of Gastric Cancer Progression through the c-Met Pathway. PLoS One. 2015;10(7):e0128751. doi:10.1371/journal.pone.0128751
  • Zhang Z, Kong Y, Yang W, et al. Upregulation of microRNA-34a enhances the DDP sensitivity of gastric cancer cells by modulating proliferation and apoptosis via targeting MET. Oncol Rep. 2016;36(4):2391–2397. doi:10.3892/or.2016.5016
  • Liu S, Shun C, Hung K, et al. Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget. 2016;7(10):11251–11262. doi:10.18632/oncotarget.7081