180
Views
8
CrossRef citations to date
0
Altmetric
Review

Investigational Treatment Agents for Recurrent Clostridioides difficile Infection (rCDI)

, &
Pages 371-384 | Published online: 09 Oct 2020

References

  • Centers for Disease Control and Prevention. Biggest threats and data; 2020. Atlanta, GA. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed May 22, 2020.
  • Pepin J, Valiquette L, Cossette B. Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ. 2005;173(9):1037–1042. doi:10.1503/cmaj.050978
  • Mullish BH, Williams HR. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin Med (Lond). 2018;18(3):237–241. doi:10.7861/clinmedicine.18-3-237
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):987–994. doi:10.1093/cid/ciy149
  • Johnson S, Louie TJ, Gerding DN, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–354. doi:10.1093/cid/ciu313
  • Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–431. doi:10.1056/NEJMoa0910812
  • Sheitoyan-Pesant C, Abou Chakra CN, Pepin J, Marcil-Heguy A, Nault V, Valiquette L. Healthcare burden of multiple recurrences of Clostridium difficile infection. Clin Infect Dis. 2016;62(5):574–580. doi:10.1093/cid/civ958
  • Cornely OA, Miller MA, Louie TJ, Crook DW, Gorbach SL. Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis. 2012;55(Suppl 2):S154–161. doi:10.1093/cid/cis462
  • Gerding DN, Kelly CP, Rahav G, et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence. Clin Infect Dis. 2018;67(5):649–656. doi:10.1093/cid/ciy171
  • Olsen MA, Yan Y, Reske KA, Zilberberg M, Dubberke ER. Impact of Clostridium difficile recurrence on hospital readmissions. Am J Infect Control. 2015;43(4):318–322. doi:10.1016/j.ajic.2014.12.020
  • Tran MN, Kullar R, Goldstein EJC. Investigational drug therapies currently in early-stage clinical development for the treatment of clostridioides (clostridium) difficile infection. Expert Opin Investig Drugs. 2019;28(4):323–335. doi:10.1080/13543784.2019.1581763
  • Xu WC, Silverman MH, Yu XY, Wright G, Brown N. Discovery and development of DNA polymerase IIIC inhibitors to treat Gram-positive infections. Bioorg Med Chem. 2019;27(15):3209–3217. doi:10.1016/j.bmc.2019.06.017
  • Hammond RA, Barnes MH, Mack SL, Mitchener JA, Brown NC. Bacillus subtilis DNA polymerase III: complete sequence, overexpression, and characterization of the polC gene. Gene. 1991;98(1):29–36. doi:10.1016/0378-1119(91)90100-P
  • Pacitti DF, Barnes MH, Li DH, Brown NC. Characterization and overexpression of the gene encoding Staphylococcus aureus DNA polymerase III. Gene. 1995;165(1):51–56. doi:10.1016/0378-1119(95)00377-I
  • Foster KA, Barnes MH, Stephenson RO, et al. DNA polymerase III of Enterococcus faecalis: expression and characterization of recombinant enzymes encoded by the polC and dnaE genes. Protein Expr Purif. 2003;27(1):90–97. doi:10.1016/S1046-5928(02)00577-6
  • Torti A, Lossani A, Savi L, et al. Clostridium difficile DNA polymerase IIIC: basis for activity of antibacterial compounds. Curr Enzym Inhib. 2011;7(3):147–153. doi:10.2174/157340811798807597
  • Xu WC, Wright GE, Brown NC, et al. 7-Alkyl-N(2)-substituted-3-deazaguanines. Synthesis, DNA polymerase III inhibition and antibacterial activity. Bioorg Med Chem Lett. 2011;21(14):4197–4202. doi:10.1016/j.bmcl.2011.05.093
  • Dvoskin S, Xu WC, Brown NC, Yanachkov IB, Yanachkova M, Wright GE. A novel agent effective against Clostridium difficile infection. Antimicrob Agents Chemother. 2012;56(3):1624–1626. doi:10.1128/AAC.06097-11
  • van Eijk E, Boekhoud IM, Kuijper EJ, Bos-Sanders IMJG, Wright G, Smits WK. Genome location dictates the transcriptional response to sub-inhibitory concentrations of PolC-inhibitors in Clostridium difficile. bioRxiv. 2018.
  • van Eijk E, Boekhoud IM, Kuijper EJ, Bos-Sanders I, Wright G, Smits WK. Genome location dictates the transcriptional response to PolC inhibition in Clostridium difficile. Antimicrob Agents Chemother. 2019;63:2. doi:10.1128/AAC.00779-19
  • Garey K. A Randomized, Double Blind, Placebo Controlled, Single and Multiple Ascending Dose Phase 1 Study to Determine the Safety, Pharmacokinetics, Food, and Fecal Microbiome Effects of ACX 362E Administered Orally to Healthy Subjects. Washington DC: IDWeek; 2019.
  • Acurx Pharmaceuticals. ACX-375C. Available from: https://www.acurxpharma.com/pipeline/acx-375c. Accessed June 1, 2020.
  • Wikipedia. Glutamine. Available from: https://en.wikipedia.org/w/index.php?title=glutamine&oldid=956552063. Accessed June 3, 2020.
  • Carneiro BA, Fujii J, Brito GA, et al. Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect Immun. 2006;74(1):81–87. doi:10.1128/IAI.74.1.81-87.2006
  • Warren CA, Calabrese GM, Li Y, et al. Effects of adenosine A(2)A receptor activation and alanyl-glutamine in Clostridium difficile toxin-induced ileitis in rabbits and cecitis in mice. BMC Infect Dis. 2012;12:13. doi:10.1186/1471-2334-12-13
  • Alonso CD, Mahoney MV. Bezlotoxumab for the prevention of Clostridium difficile infection: a review of current evidence and safety profile. Infect Drug Resist. 2019;12:1–9. doi:10.2147/IDR.S159957
  • Wilcox MH, Gerding DN, Poxton IR, et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017;376(4):305–317. doi:10.1056/NEJMoa1602615
  • Johnson S, Sambol S, Best E, et al. Efficacy of Bezlotoxumab in Patients Infected with Strains of Clostridium Difficile Associated with Poor Outcomes. IDWeek; 2016.
  • Goldstein EJC, Citron DM, Gerding DN, et al. Bezlotoxumab for the prevention of recurrent Clostridioides difficile infection: 12-month observational data from the randomized phase III trial, MODIFY II. Clin Infect Dis. 2019. doi:10.1093/cid/ciz1151
  • Golan Y, Dupont HL, Aldomiro F, et al. Bezlotoxumab (BEZ) for prevention of Clostridium difficile infection (CDI) recurrence (rCDI): outcomes in patients with substantial renal impairment (SRI). Open Forum Infect Dis. 2017;4(Suppl 1):S387. doi:10.1093/ofid/ofx163.962
  • Kelly CP, Wilcox M, Glerup H, et al. Characteristics and outcomes in patients with C. difficile infection (CDI) and inflammatory bowel disease: bezlotoxumab versus placebo. Gastroenterology. 2017;152(5):S340. doi:10.1016/S0016-5085(17)31400-2
  • Cornely OA, Mullane KM, Birch T, et al. Exploratory evaluation of bezlotoxumab on outcomes associated with Clostridioides difficile infection in MODIFY I/II participants with cancer. Open Forum Infect Dis. 2020;7(2):ofaa038. doi:10.1093/ofid/ofaa038
  • Critchley IA, Green LS, Young CL, et al. Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. J Antimicrob Chemother. 2009;63(5):954–963. doi:10.1093/jac/dkp041
  • Citron DM, Warren YA, Tyrrell KL, Merriam V, Goldstein EJ. Comparative in vitro activity of REP3123 against Clostridium difficile and other anaerobic intestinal bacteria. J Antimicrob Chemother. 2009;63(5):972–976. doi:10.1093/jac/dkp037
  • Ochsner UA, Bell SJ, O’Leary AL, et al. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model. J Antimicrob Chemother. 2009;63(5):964–971. doi:10.1093/jac/dkp042
  • Nayak SU, Griffiss JM, Blumer J, et al. Safety, tolerability, systemic exposure, and metabolism of CRS3123, a methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile, in a phase 1 study. Antimicrob Agents Chemother. 2017;61:8. doi:10.1128/AAC.02760-16
  • Lomeli BK, Galbraith H, Schettler J, et al. Multiple-ascending-dose phase 1 clinical study of the safety, tolerability, and pharmacokinetics of CRS3123, a narrow-spectrum agent with minimal disruption of normal gut microbiota. Antimicrob Agents Chemother. 2019;64:1. doi:10.1128/AAC.01395-19
  • Rashid MU, Dalhoff A, Backstrom T, et al. Ecological impact of MCB3837 on the normal human microbiota. Int J Antimicrob Agents. 2014;44(2):125–130. doi:10.1016/j.ijantimicag.2014.03.016
  • Deinove. Available from: http://www.deinove.com. Accessed June 1, 2020.
  • Rashid MU, Dalhoff A, Weintraub A, Nord CE. In vitro activity of MCB3681 against Clostridium difficile strains. Anaerobe. 2014;28:216–219. doi:10.1016/j.anaerobe.2014.07.001
  • Freeman J, Pilling S, Vernon J, Wilcox MH. In vitro activities of MCB3681 and eight comparators against Clostridium difficile isolates with known ribotypes and diverse geographical spread. Antimicrob Agents Chemother. 2017;61:3. doi:10.1128/AAC.02077-16
  • Dalhoff A, Rashid MU, Kapsner T, Panagiotidis G, Weintraub A, Nord CE. Analysis of effects of MCB3681, the antibacterially active substance of prodrug MCB3837, on human resident microflora as proof of principle. Clin Microbiol Infect. 2015;21(8):767e761–764. doi:10.1016/j.cmi.2015.05.025
  • Mathur T, Barman TK, Kumar M, et al. In vitro and in vivo activities of DS-2969b, a novel GyrB inhibitor, against Clostridium difficile. Antimicrob Agents Chemother. 2018;62:4. doi:10.1128/AAC.02157-17
  • Kumar M, Mathur T, Joshi V, Upadhyay DJ, Inoue SI, Masuda N. Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota. Anaerobe. 2018;51:120–123. doi:10.1016/j.anaerobe.2018.04.017
  • Tyrrell KL, Citron DM, Merriam CV, Leoncio E, Goldstein EJC. In vitro activity of DS-2969b and comparator antimicrobial agents against Clostridioides (Clostridium) difficile, methicillin-resistant Staphylococcus aureus, and other anaerobic bacteria. Anaerobe. 2018;54:39–41. doi:10.1016/j.anaerobe.2018.04.010
  • Dennie J, Vandell AG, Inoue S, et al. A phase I, single-ascending-dose study in healthy subjects to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-2969b, a novel GyrB inhibitor. J Clin Pharmacol. 2018;58(12):1557–1565. doi:10.1002/jcph.1151
  • Vandell AG, Inoue S, Dennie J, et al. Phase 1 study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple oral doses of DS-2969b, a novel GyrB inhibitor, in healthy subjects. Antimicrob Agents Chemother. 2018;62:5. doi:10.1128/AAC.02537-17
  • Daiichi-Sankyo. Available from: https://www.daiichisankyo.com/rd/pipeline/development_pipeline/. Accessed June 1, 2020.
  • Leeds JA, Sachdeva M, Mullin S, Dzink-Fox J, Lamarche MJ. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob Agents Chemother. 2012;56(8):4463–4465. doi:10.1128/AAC.06354-11
  • Citron DM, Tyrrell KL, Merriam CV, Goldstein EJ. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 2012;56(5):2493–2503. doi:10.1128/AAC.06305-11
  • Leeds JA. Antibacterials developed to target a single organism: mechanisms and frequencies of reduced susceptibility to the novel anti-Clostridium difficile compounds fidaxomicin and LFF571. Cold Spring Harb Perspect Med. 2016;6(2):a025445. doi:10.1101/cshperspect.a025445
  • Ting LS, Praestgaard J, Grunenberg N, Yang JC, Leeds JA, Pertel P. A first-in-human, randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study to assess the safety and tolerability of LFF571 in healthy volunteers. Antimicrob Agents Chemother. 2012;56(11):5946–5951. doi:10.1128/AAC.00867-12
  • Bhansali SG, Mullane K, Ting LS, et al. Pharmacokinetics of LFF571 and vancomycin in patients with moderate Clostridium difficile infections. Antimicrob Agents Chemother. 2015;59(3):1441–1445. doi:10.1128/AAC.04252-14
  • Mullane K, Lee C, Bressler A, et al. Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother. 2015;59(3):1435–1440. doi:10.1128/AAC.04251-14
  • Novartis. Available from: https://www.novartis.com/our-science/novartis-global-pipeline. Accessed June 1, 2020.
  • Louie T, Morgan A, Larios O, Ravic M. Phase IIa Dose Escalation Treatment of Clostridioides Difficile-Associated Diarrhea with MGB-BP-3, a Novel First in Class DNA Minor Grove Binding Antibiotic. ECCMID; 2020.
  • MGB biopharma. Available from: http://www.mgb-biopharma.com. Accessed June 1, 2020.
  • Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F. A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot (Tokyo). 1984;37(4):309–317. doi:10.7164/antibiotics.37.309
  • McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W. Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers. 2002;66(4):261–284. doi:10.1002/bip.10296
  • Boger DL. Vancomycin, teicoplanin, and ramoplanin: synthetic and mechanistic studies. Med Res Rev. 2001;21(5):356–381. doi:10.1002/med.1014
  • Farver DK, Hedge DD, Lee SC. Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother. 2005;39(5):863–868. doi:10.1345/aph.1E397
  • Montecalvo MA. Ramoplanin: a novel antimicrobial agent with the potential to prevent vancomycin-resistant enterococcal infection in high-risk patients. J Antimicrob Chemother. 2003;51(Suppl 3):iii31–35. doi:10.1093/jac/dkg274
  • Citron DM, Merriam CV, Tyrrell KL, Warren YA, Fernandez H, Goldstein EJ. In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob Agents Chemother. 2003;47(7):2334–2338. doi:10.1128/AAC.47.7.2334-2338.2003
  • Pelaez T, Alcala L, Alonso R, et al. In vitro activity of ramoplanin against Clostridium difficile, including strains with reduced susceptibility to vancomycin or with resistance to metronidazole. Antimicrob Agents Chemother. 2005;49(3):1157–1159. doi:10.1128/AAC.49.3.1157-1159.2005
  • Kraus CN, Lyerly MW, Carman RJ. Ambush of Clostridium difficile spores by ramoplanin: activity in an in vitro model. Antimicrob Agents Chemother. 2015;59(5):2525–2530. doi:10.1128/AAC.04853-14
  • Pullman JPJ, Leach TS Ramoplanin versus vancomycin in the treatment of Clostridium difficile diarrhea: a phase 2 study. 44th Intersci. Conf. Antimicrob. Agents Chemother; Washington, DC; 2004.
  • Iscla I, Wray R, Blount P, et al. A new antibiotic with potent activity targets MscL. J Antibiot (Tokyo). 2015;68(7):453–462. doi:10.1038/ja.2015.4
  • Wolfe C, Pagano P, Pillar CM, Shinabarger DL, Boulos RA. Comparison of the in vitro antibacterial activity of Ramizol, fidaxomicin, vancomycin and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn Microbiol Infect Dis. 2018;92(3):250–252. doi:10.1016/j.diagmicrobio.2018.06.002
  • Rao S, Prestidge CA, Miesel L, Sweeney D, Shinabarger DL, Boulos RA. Preclinical development of Ramizol, an antibiotic belonging to a new class, for the treatment of Clostridium difficile colitis. J Antibiot (Tokyo). 2016;69(12):879–884. doi:10.1038/ja.2016.45
  • Wright L, Rao S, Thomas N, Boulos RA, Prestidge CA. Ramizol((R)) encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2018;44(9):1451–1457. doi:10.1080/03639045.2018.1459676
  • Sibley K, Chen J, Koetzner L, et al. A 14-day repeat dose oral gavage range-finding study of a first-in-class CDI investigational antibiotic, in rats. Sci Rep. 2019;9(1):158. doi:10.1038/s41598-018-36690-9
  • Boulos & Cooper Pharmaceuticals. Available from: https://bouloscooper.com/research-and-development/antibiotic-drugs/. Accessed June 1, 2020.
  • Kelly. Comparing the Effects of SMT19969, Vancomycin and Fidaxomicin on Sporulation of Several Clostridium Difficile Ribotypes. Copenhagen, Denmark: ECCMID; 2015.
  • Basseres E, Endres BT, Khaleduzzaman M, et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 2016;71(5):1245–1251. doi:10.1093/jac/dkv498
  • Corbett D, Wise A, Birchall S, et al. In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile. J Antimicrob Chemother. 2015;70(6):1751–1756. doi:10.1093/jac/dkv006
  • Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV. Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother. 2013;57(10):4872–4876. doi:10.1128/AAC.01136-13
  • Snydman DR, McDermott LA, Thorpe CM, et al. In Vitro Activity of Ridinilazole and Comparators Against Isolates of Clostridium Difficile Obtained from Stools of Patients as Part of US Surveillance in 2014. ASM Microbe; 2017.
  • Snydman DR, McDermott LA, Thorpe CM, et al. Antimicrobial susceptibility and ribotypes of Clostridium difficile isolates from a Phase 2 clinical trial of ridinilazole (SMT19969) and vancomycin. J Antimicrob Chemother. 2018;73(8):2078–2084. doi:10.1093/jac/dky135
  • Baines SD, Crowther GS, Freeman J, Todhunter S, Vickers R, Wilcox MH. SMT19969 as a treatment for Clostridium difficile infection: an assessment of antimicrobial activity using conventional susceptibility testing and an in vitro gut model. J Antimicrob Chemother. 2015;70(1):182–189. doi:10.1093/jac/dku324
  • Vickers RJ, Tillotson GS, Nathan R, et al. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis. 2017;17(7):735–744. doi:10.1016/S1473-3099(17)30235-9
  • Thorpe CM, Kane AV, Chang J, Tai A, Vickers RJ, Snydman DR. Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel Clostridium difficile-targeting antibacterial, compared to vancomycin. PLoS One. 2018;13(8):e0199810. doi:10.1371/journal.pone.0199810
  • Theriot CM, Koenigsknecht MJ, Carlson PE, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114. doi:10.1038/ncomms4114
  • Qian X, Yanagi K, Kane AV, et al. Effect of Broad Vs. Narrow Spectrum Clostridioides Difficile Treatment on Human Stool Bile Acid Composition Over Time. IDWeek; 2019.
  • Paul S, Vickers RJ, Garey KW, et al. Quality of Life Changes in Patients with Clostridium Difficile Infection (CDI): A Randomized, Double-Blind Trial of Ridinilazole (RDZ) Compared to Vancomycin (VAN). IDWeek; 2019.
  • Guh AY, Mu Y, Winston LG, et al. Trends in U.S. Burden of Clostridioides difficile infection and outcomes. N Engl J Med. 2020;382(14):1320–1330. doi:10.1056/NEJMoa1910215
  • Kelly CP, LaMont JT. Clostridium difficile–more difficult than ever. N Engl J Med. 2008;359(18):1932–1940. doi:10.1056/NEJMra0707500
  • Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection? Clin Microbiol Infect. 2012;18(Suppl 6):21–27. doi:10.1111/1469-0691.12046
  • Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281–289. doi:10.1016/S1473-3099(11)70374-7
  • Gerding DN, Cornely OA, Grill S, et al. Cadazolid for the treatment of Clostridium difficile infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect Dis. 2019;19(3):265–274. doi:10.1016/S1473-3099(18)30614-5