305
Views
3
CrossRef citations to date
0
Altmetric
Review

Ultra Long-Acting β-Agonists in Chronic Obstructive Pulmonary Disease

&
Pages 589-602 | Published online: 14 Dec 2020

References

  • Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2020.
  • Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. Eur Respir J. 2019;53:1900164. doi:10.1183/13993003.00164-2019
  • Celli BR, Wedzicha JA, Drazen JM. Update on clinical aspects of Chronic Obstructive Pulmonary Disease. N Engl J Med. 2019;381:1257–1266. doi:10.1056/NEJMra1900500
  • Johnson M. Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol. 2006;117:18–24; quiz 5. doi:10.1016/j.jaci.2005.11.012
  • Ejiofor S, Turner AM. Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med. 2013;7:17–34. doi:10.4137/CCRPM.S7211
  • Billington CK, Penn RB, Hall IP. β(2) Agonists. Handb Exp Pharmacol. 2017;237:23–40.
  • Beeh KM, Beier J. The short, the long and the “ultra-long”: why duration of bronchodilator action matters in chronic obstructive pulmonary disease. Adv Ther. 2010;27:150–159. doi:10.1007/s12325-010-0017-6
  • Malerba M, Radaeli A, Montuschi P, Babu KS, Morjaria JB. Investigational beta-2 adrenergic agonists for the treatment of chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2017;26:319–329. doi:10.1080/13543784.2017.1287172
  • Sidhaye VK, Nishida K, Martinez FJ. Precision medicine in COPD: where are we and where do we need to go? Eur Respir Rev. 2018;27:180022. doi:10.1183/16000617.0022-2018
  • Corlateanu A, Mendez Y, Wang Y, Garnica RJA, Botnaru V, Siafakas N. Chronic obstructive pulmonary disease and phenotypes: a state-of-the-art. Pulmonology. 2020;26:95–100. doi:10.1016/j.pulmoe.2019.10.006
  • Rogliani P, Calzetta L, Coppola A, et al. Optimizing drug delivery in COPD: the role of inhaler devices. Respir Med. 2017;124:6–14. doi:10.1016/j.rmed.2017.01.006
  • Mahon J, Fitzgerald A, Glanville J, et al. Misuse and/or treatment delivery failure of inhalers among patients with asthma or COPD: a review and recommendations for the conduct of future research. Respir Med. 2017;129:98–116. doi:10.1016/j.rmed.2017.05.004
  • Burkes RM, Donohue JF. An update on the global initiative for Chronic Obstructive Lung Disease 2017 guidelines with a focus on classification and management of stable COPD. Respir Care. 2018;63:749–758. doi:10.4187/respcare.06174
  • Kew KM, Mavergames C, Walters JA. Long-acting beta2-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;Cd010177.
  • Zafar MA, Droege C, Foertsch M, Panos RJ. Update on ultra-long-acting β agonists in chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2014;23:1687–1701. doi:10.1517/13543784.2014.942730
  • Beier J, Chanez P, Martinot JB, et al. Safety, tolerability and efficacy of indacaterol, a novel once-daily beta(2)-agonist, in patients with COPD: a 28-day randomised, placebo controlled clinical trial. Pulm Pharmacol Ther. 2007;20:740–749. doi:10.1016/j.pupt.2006.09.001
  • Murphy L, Rennard S, Donohue J, et al. Turning a molecule into a medicine: the development of indacaterol as a novel once-daily bronchodilator treatment for patients with COPD. Drugs. 2014;74:1635–1657. doi:10.1007/s40265-014-0284-7
  • Han J, Dai L, Zhong N. Indacaterol on dyspnea in chronic obstructive pulmonary disease: a systematic review and meta-analysis of randomized placebo-controlled trials. BMC Pulm Med. 2013;13:26. doi:10.1186/1471-2466-13-26
  • Geake JB, Dabscheck EJ, Wood-Baker R, Cates CJ. Indacaterol, a once-daily beta2-agonist, versus twice-daily beta₂-agonists or placebo for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;1:Cd010139.
  • Gotfried MH, Kerwin EM, Lawrence D, Lassen C, Kramer B. Efficacy of indacaterol 75 μg once-daily on dyspnea and health status: results of two double-blind, placebo-controlled 12-week studies. Copd. 2012;9:629–636. doi:10.3109/15412555.2012.729623
  • Donohue JF, Betts KA, Du EX, et al. Comparative efficacy of long-acting β2-agonists as monotherapy for chronic obstructive pulmonary disease: a network meta-analysis. Int J Chron Obstruct Pulmon Dis. 2017;12:367–381. doi:10.2147/COPD.S119908
  • Scott DA, Woods B, Thompson JC, et al. Mortality and drug therapy in patients with chronic obstructive pulmonary disease: a network meta-analysis. BMC Pulm Med. 2015;15:145. doi:10.1186/s12890-015-0138-4
  • Metaxas EI, Balis E. The safety of indacaterol for the treatment of COPD. Expert Opin Drug Saf. 2018;17:637–642. doi:10.1080/14740338.2018.1472233
  • Muro S, Yoshisue H, Kostikas K, Olsson P, Gupta P, Wedzicha JA. Indacaterol/glycopyrronium versus tiotropium or glycopyrronium in long-acting bronchodilator-naïve COPD patients: a pooled analysis. Respirology (Carlton, Vic). 2020;25:393–400. doi:10.1111/resp.13651
  • Wedzicha JA, Banerji D, Chapman KR, et al. Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med. 2016;374:2222–2234. doi:10.1056/NEJMoa1516385
  • Anzueto AR, Kostikas K, Mezzi K, et al. Indacaterol/glycopyrronium versus salmeterol/fluticasone in the prevention of clinically important deterioration in COPD: results from the FLAME study. Respir Res. 2018;19:121. doi:10.1186/s12931-018-0830-z
  • Kalberg C, O’Dell D, Galkin D, Newlands A, Fahy WA. Dual bronchodilator therapy with umeclidinium/vilanterol versus tiotropium plus indacaterol in Chronic Obstructive Pulmonary Disease: a randomized controlled trial. Drugs R D. 2016;16:217–227. doi:10.1007/s40268-016-0131-2
  • Frampton JE. QVA149 (indacaterol/glycopyrronium fixed-dose combination): a review of its use in patients with chronic obstructive pulmonary disease. Drugs. 2014;74:465–488.
  • Chapman KR, Hurst JR, Frent SM, et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with Chronic Obstructive Pulmonary Disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am J Respir Crit Care Med. 2018;198:329–339. doi:10.1164/rccm.201803-0405OC
  • Bouyssou T, Hoenke C, Rudolf K, et al. Discovery of olodaterol, a novel inhaled beta2-adrenoceptor agonist with a 24 h bronchodilatory efficacy. Bioorg Med Chem Lett. 2010;20:1410–1414. doi:10.1016/j.bmcl.2009.12.087
  • Bouyssou T, Casarosa P, Naline E, et al. Pharmacological characterization of olodaterol, a novel inhaled beta2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J Pharmacol Exp Ther. 2010;334:53–62.
  • van Noord JA, Smeets JJ, Drenth BM, et al. 24-hour bronchodilation following a single dose of the novel β(2)-agonist olodaterol in COPD. Pulm Pharmacol Ther. 2011;24:666–672. doi:10.1016/j.pupt.2011.07.006
  • Ferguson GT, Feldman GJ, Hofbauer P, et al. Efficacy and safety of olodaterol once daily delivered via Respimat® in patients with GOLD 2–4 COPD: results from two replicate 48-week studies. Int J Chron Obstruct Pulmon Dis. 2014;9:629–645. doi:10.2147/COPD.S61717
  • Koch A, Pizzichini E, Hamilton A, et al. Lung function efficacy and symptomatic benefit of olodaterol once daily delivered via Respimat® versus placebo and formoterol twice daily in patients with GOLD 2–4 COPD: results from two replicate 48-week studies. Int J Chron Obstruct Pulmon Dis. 2014;9:697–714. doi:10.2147/COPD.S62502
  • Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George’s respiratory questionnaire. Am Rev Respir Dis. 1992;145:1321–1327. doi:10.1164/ajrccm/145.6.1321
  • Ramadan WH, Kabbara WK, Abilmona RM. Olodaterol for the treatment of chronic obstructive pulmonary disease. Am J Health Syst Pharm. 2016;73:1135–1143. doi:10.2146/ajhp150364
  • Blair HA. Tiotropium/olodaterol: a review in COPD. Drugs. 2019;79:997–1008. doi:10.1007/s40265-019-01133-w
  • Derom E, Brusselle GG, Joos GF. The once-daily fixed-dose combination of olodaterol and tiotropium in the management of COPD: current evidence and future prospects. Ther Adv Respir Dis. 2019;13:1753466619843426. doi:10.1177/1753466619843426
  • Buhl R, Maltais F, Abrahams R, et al. Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2–4). Eur Respir J. 2015;45:969–979. doi:10.1183/09031936.00136014
  • Procopiou PA, Barrett VJ, Bevan NJ, et al. Synthesis and structure-activity relationships of long-acting beta2 adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J Med Chem. 2010;53:4522–4530. doi:10.1021/jm100326d
  • Slack RJ, Barrett VJ, Morrison VS, et al. In vitro pharmacological characterization of vilanterol, a novel long-acting β2-adrenoceptor agonist with 24-hour duration of action. J Pharmacol Exp Ther. 2013;344:218–230. doi:10.1124/jpet.112.198481
  • Kempsford R, Norris V, Siederer S. Vilanterol trifenatate, a novel inhaled long-acting beta2 adrenoceptor agonist, is well tolerated in healthy subjects and demonstrates prolonged bronchodilation in subjects with asthma and COPD. Pulm Pharmacol Ther. 2013;26:256–264. doi:10.1016/j.pupt.2012.12.001
  • Hanania NA, Feldman G, Zachgo W, et al. The efficacy and safety of the novel long-acting β2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial. Chest. 2012;142:119–127. doi:10.1378/chest.11-2231
  • Feldman GJ, Edin A. The combination of umeclidinium bromide and vilanterol in the management of chronic obstructive pulmonary disease: current evidence and future prospects. Ther Adv Respir Dis. 2013;7:311–319. doi:10.1177/1753465813499789
  • Malerba M, Morjaria JB, Radaeli A. Differential pharmacology and clinical utility of emerging combination treatments in the management of COPD–role of umeclidinium/vilanterol. Int J Chron Obstruct Pulmon Dis. 2014;9:687–695. doi:10.2147/COPD.S47792
  • Albertson TE, Harper R, Murin S, Sandrock C. Patient considerations in the treatment of COPD: focus on the new combination inhaler umeclidinium/vilanterol. Patient Prefer Adherence. 2015;9:235–242. doi:10.2147/PPA.S71535
  • Siler TM, Donald AC, O’Dell D, Church A, Fahy WA. A randomized, parallel-group study to evaluate the efficacy of umeclidinium/vilanterol 62. 5/25μg on health-related quality of life in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:971–979. doi:10.2147/COPD.S102962
  • Donohue JF, Singh D, Munzu C, Kilbride S, Church A. Magnitude of umeclidinium/vilanterol lung function effect depends on monotherapy responses: results from two randomised controlled trials. Respir Med. 2016;112:65–74. doi:10.1016/j.rmed.2016.01.001
  • Feldman GJ, Sousa AR, Lipson DA, et al. Comparative efficacy of once-daily umeclidinium/vilanterol and tiotropium/olodaterol therapy in symptomatic Chronic Obstructive Pulmonary Disease: a randomized study. Adv Ther. 2017;34:2518–2533. doi:10.1007/s12325-017-0626-4
  • Siler TM, Nagai A, Scott-Wilson CA, Midwinter DA, Crim C. A randomised, phase III trial of once-daily fluticasone furoate/vilanterol 100/25 μg versus once-daily vilanterol 25 μg to evaluate the contribution on lung function of fluticasone furoate in the combination in patients with COPD. Respir Med. 2017;123:8–17. doi:10.1016/j.rmed.2016.12.001
  • Boscia JA, Pudi KK, Zvarich MT, Sanford L, Siederer SK, Crim C. Effect of once-daily fluticasone furoate/vilanterol on 24-hour pulmonary function in patients with chronic obstructive pulmonary disease: a randomized, three-way, incomplete block, crossover study. Clin Ther. 2012;34:1655–66.e5. doi:10.1016/j.clinthera.2012.06.005
  • Lötvall J, Bakke PS, Bjermer L, et al. Efficacy and safety of 4 weeks’ treatment with combined fluticasone furoate/vilanterol in a single inhaler given once daily in COPD: a placebo-controlled randomised trial. BMJ Open. 2012;2:e000370. doi:10.1136/bmjopen-2011-000370
  • Dransfield MT, Bourbeau J, Jones PW, et al. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med. 2013;1:210–223. doi:10.1016/S2213-2600(13)70040-7
  • Vestbo J, Anderson JA, Brook RD, et al. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled trial. Lancet. 2016;387:1817–1826. doi:10.1016/S0140-6736(16)30069-1
  • Lipson DA, Barnhart F, Brealey N, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378:1671–1680. doi:10.1056/NEJMoa1713901
  • Tabberer M, Lomas DA, Birk R, et al. Once-daily triple therapy in patients with COPD: patient-reported symptoms and quality of life. Adv Ther. 2018;35:56–71. doi:10.1007/s12325-017-0650-4
  • Pascual S, Feimer J, De Soyza A, et al. Preference, satisfaction and critical errors with Genuair and Breezhaler inhalers in patients with COPD: a randomised, cross-over, multicentre study. NPJ Prim Care Respir Med. 2015;25:15018. doi:10.1038/npjpcrm.2015.18
  • Dalby R, Spallek M, Voshaar T. A review of the development of respimat soft mist inhaler. Int J Pharm. 2004;283:1–9. doi:10.1016/j.ijpharm.2004.06.018
  • Skolnik NS, Nguyen TS, Shrestha A, Ray R, Corbridge TC, Brunton SA. Current evidence for COPD management with dual long-acting muscarinic antagonist/long-acting β(2)-agonist bronchodilators. Postgrad Med. 2020;132:198–205. doi:10.1080/00325481.2019.1702834
  • Ge X, Woo AY, Xing G, et al. Synthesis and biological evaluation of β(2)-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur J Med Chem. 2018;152:424–435. doi:10.1016/j.ejmech.2018.04.041
  • Gan LL, Wang MW, Cheng MS, Pan L. Trachea relaxing effects and beta2-selectivity of SPFF, a newly developed bronchodilating agent, in guinea pigs and rabbits. Biol Pharm Bull. 2003;26:323–328. doi:10.1248/bpb.26.323
  • Hao Z, Zhang Y, Pan L, et al. Comparison of enantiomers of SPFF, a novel beta2-Adrenoceptor agonist, in bronchodilating effect in guinea pigs. Biol Pharm Bull. 2008;31:866–872. doi:10.1248/bpb.31.866
  • Pan H, Li Q, Pan L, et al. Stereoselective activity of 2-(4-amino-3-chloro-5- trifluomethyl-phenyl)-2-tert-butylamino-ethanol hydrochloride to improve the pulmonary function in asthma. Biomedical Rep. 2014;2:539–544. doi:10.3892/br.2014.279
  • Aparici M, Gómez-Angelats M, Vilella D, et al. Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther. 2012;342:497–509. doi:10.1124/jpet.112.193284
  • Beier J, Fuhr R, Massana E, et al. Abediterol (LAS100977), a novel long-acting β2-agonist: efficacy, safety and tolerability in persistent asthma. Respir Med. 2014;108:1424–1429. doi:10.1016/j.rmed.2014.08.005
  • Singh DPR, Ribera A, Seoane B, Messana E, Astbury C. Efficacy and Safety of Abediterol (LAS100977) in Stable Asthma: Phase II, Randomized, Crossover Study. ERS Annual Congress; 2013.
  • Beier J, Pujol H, Seoane B, et al. Abediterol, a novel long-acting β2-agonist: bronchodilation, safety, tolerability and pharmacokinetic results from a single-dose, dose-ranging, active-comparator study in patients with COPD. BMC Pulm Med. 2016;16:102. doi:10.1186/s12890-016-0266-5
  • Beier J, Fuhr R, Seoane B, et al. Efficacy, safety, and tolerability of once-daily abediterol in patients with stable, persistent asthma: a Phase II, randomized, 7-day, crossover study. Pharmacol Res Perspect. 2017;5:e00356. doi:10.1002/prp2.356
  • Jacobsen JR, Choi SK, Combs J, et al. A multivalent approach to the discovery of long-acting β(2)-adrenoceptor agonists for the treatment of asthma and COPD. Bioorg Med Chem Lett. 2012;22:1213–1218. doi:10.1016/j.bmcl.2011.11.072
  • Cazzola M, Matera MG, Lötvall J. Ultra long-acting beta 2-agonists in development for asthma and chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2005;14:775–783. doi:10.1517/13543784.14.7.775
  • Matera MG, Cazzola M. ultra-long-acting beta2-adrenoceptor agonists: an emerging therapeutic option for asthma and COPD? Drugs. 2007;67:503–515. doi:10.2165/00003495-200767040-00002
  • Jacobsen JR, Aggen JB, Church TJ, et al. Multivalent design of long-acting β(2)-adrenoceptor agonists incorporating biarylamines. Bioorg Med Chem Lett. 2014;24:2625–2630. doi:10.1016/j.bmcl.2014.04.069
  • McKinnell RM, Klein U, Linsell MS, et al. Discovery of TD-4306, a long-acting β2-agonist for the treatment of asthma and COPD. Bioorg Med Chem Lett. 2014;24:2871–2876. doi:10.1016/j.bmcl.2014.04.095
  • Glossop PA, Lane CA, Price DA, et al. Inhalation by design: novel ultra-long-acting β(2)-adrenoreceptor agonists for inhaled once-daily treatment of asthma and chronic obstructive pulmonary disease that utilize a sulfonamide agonist headgroup. J Med Chem. 2010;53:6640–6652. doi:10.1021/jm1005989
  • Macintyre FJI, Surujbally B. A randomised, double-blind study to determine the duration of action of lung pharmacodynamics by plethysmography (sGaw) of a β2 adrenoreceptor agonist, PF-00610355 [abstract]. Eur Respir J. 2009.
  • GL MF L, Surujbally B, Chong CL, Davis J. Safety and toleration of PF-00610355, a novel inhaled long acting β2 adrenoreceptor agonist [abstract]. Eur Respir J. 2009.
  • Diderichsen PM, Cox E, Martin SW, Cleton A, Ribbing J. Predicted heart rate effect of inhaled PF-00610355, a long acting β-adrenoceptor agonist, in volunteers and patients with chronic obstructive pulmonary disease. Br J Clin Pharmacol. 2013;76:752–762. doi:10.1111/bcp.12080
  • Stocks MJ, Alcaraz L, Bailey A, et al. Discovery of AZD3199, an inhaled ultralong acting β2 receptor agonist with rapid onset of action. ACS Med Chem Lett. 2014;5:416–421. doi:10.1021/ml4005232
  • Bjermer L, Kuna P, Jorup C, Bengtsson T, Rosenborg J. Clinical pharmacokinetics of AZD3199, an inhaled ultra-long-acting β2-adrenoreceptor agonist (uLABA). Drug Des Devel Ther. 2015;9:753–762. doi:10.2147/DDDT.S66049
  • Bjermer L, Rosenborg J, Bengtsson T, Lötvall J. Comparison of the bronchodilator and systemic effects of AZD3199, an inhaled ultra-long-acting β₂-adrenoceptor agonist, with formoterol in patients with asthma. Ther Adv Respir Dis. 2013;7:264–271. doi:10.1177/1753465813497527
  • Kuna P, Ivanov Y, Trofimov VI, et al. Efficacy and safety of AZD3199 vs formoterol in COPD: a randomized, double-blind study. Respir Res. 2013;14:64. doi:10.1186/1465-9921-14-64
  • Cazzola M, Matera MG. Novel long-acting bronchodilators for COPD and asthma. Br J Pharmacol. 2008;155:291–299. doi:10.1038/bjp.2008.284
  • Kikkawa H, Kanno K, Ikezawa K. TA-2005, a novel, long-acting, and selective beta 2-adrenoceptor agonist: characterization of its in vivo bronchodilating action in guinea pigs and cats in comparison with other beta 2-agonists. Biol Pharm Bull. 1994;17:1047–1052. doi:10.1248/bpb.17.1047
  • Voss HP, Donnell D, Bast A. Atypical molecular pharmacology of a new long-acting beta 2-adrenoceptor agonist, TA 2005. Eur J Pharmacol. 1992;227:403–409. doi:10.1016/0922-4106(92)90158-R
  • Kikkawa H, Naito K, Ikezawa K. Tracheal relaxing effects and beta 2-selectivity of TA-2005, a newly developed bronchodilating agent, in isolated guinea pig tissues. Jpn J Pharmacol. 1991;57:175–185. doi:10.1254/jjp.57.175
  • Kikkawa H, Isogaya M, Nagao T, Kurose H. The role of the seventh transmembrane region in high affinity binding of a beta 2-selective agonist TA-2005. Mol Pharmacol. 1998;53:128–134. doi:10.1124/mol.53.1.128
  • Voss HP, Shukrula S, Wu TS, Donnell D, Bast A. A functional beta-2 adrenoceptor-mediated chronotropic response in isolated guinea pig heart tissue: selectivity of the potent beta-2 adrenoceptor agonist TA 2005. J Pharmacol Exp Ther. 1994;271:386–389.
  • Tashkin DP, Fabbri LM. Long-acting beta-agonists in the management of chronic obstructive pulmonary disease: current and future agents. Respir Res. 2010;11:149. doi:10.1186/1465-9921-11-149
  • Kottakis INA, Raptis H, Savu A, Linberg SE, Woodcock AA. Efficacy of the novel very long-acting β2-agonist carmoterol following 7 days once daily dosing: comparison with twice daily formoterol in patient with persistent asthma. Eur Respir J. 2006.
  • Nandeuil AKI, Raptis H, Roslan H, Ivanov Y, Woodcock A. Safety and tolerability of the novel very long acting β2- agonist carmoterol given as a 2 mg qd dose; 8 days comparison with formoterol and placebo in patients with persistent asthma. Eur Respir J. 2006.
  • Chiesi. Annual report 2010. Chiesi Farmaceutici SpA Source document no longer available. 2010
  • Xing G, Pan L, Yi C, et al. Design, synthesis and biological evaluation of 5-(2-amino-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one derivatives as potent β(2)-adrenoceptor agonists. Bioorg Med Chem. 2019;27:2306–2314. doi:10.1016/j.bmc.2018.10.043
  • Woo AY, Ge XY, Pan L, et al. Discovery of β-arrestin-biased β(2)-adrenoceptor agonists from 2-amino-2-phenylethanol derivatives. Acta Pharmacol Sin. 2019;40:1095–1105. doi:10.1038/s41401-018-0200-x
  • Yi C, Xing G, Wang S, et al. Design, synthesis and biological evaluation of 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one derivatives as potent β(2)-adrenoceptor agonists. Bioorg Med Chem. 2020;28:115178.
  • Eichel K, von Zastrow M. Subcellular organization of GPCR signaling. Trends Pharmacol Sci. 2018;39:200–208. doi:10.1016/j.tips.2017.11.009
  • Tian X, Kang DS, Benovic JL. β-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol. 2014;219:173–186.
  • Jean-Charles PY, Kaur S, Shenoy SK. G protein-coupled receptor signaling through β-arrestin-dependent mechanisms. J Cardiovasc Pharmacol. 2017;70:142–158. doi:10.1097/FJC.0000000000000482
  • Kume H. [Role of bronchodilators in therapy for COPD-mechanisms of LABA and LAMA on airway smooth muscle]. Nihon Rinsho. 2016;74:813–819. Japanese.
  • Cazzola M, Calzetta L, Puxeddu E, et al. Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respir Res. 2016;17:70.
  • Hughes AD, Chin KH, Dunham SL, et al. Discovery of muscarinic acetylcholine receptor antagonist and beta 2 adrenoceptor agonist (MABA) dual pharmacology molecules. Bioorg Med Chem Lett. 2011;21:1354–1358. doi:10.1016/j.bmcl.2011.01.043
  • Hegde SS, Hughes AD, Chen Y, et al. Pharmacologic characterization of GSK-961081 (TD-5959), a first-in-class inhaled bifunctional bronchodilator possessing muscarinic receptor antagonist and β2-adrenoceptor agonist properties. J Pharmacol Exp Ther. 2014;351:190–199. doi:10.1124/jpet.114.216861
  • Ambery CL, Wielders P, Ludwig-Sengpiel A, Chan R, Riley JH. Population pharmacokinetics and pharmacodynamics of GSK961081 (batefenterol), a muscarinic antagonist and β2-agonist, in moderate-to-severe COPD patients: substudy of a randomized trial. Drugs R D. 2015;15:281–291. doi:10.1007/s40268-015-0104-x
  • Bateman ED, Kornmann O, Ambery C, Norris V. Pharmacodynamics of GSK961081, a bi-functional molecule, in patients with COPD. Pulm Pharmacol Ther. 2013;26:581–587. doi:10.1016/j.pupt.2013.03.015
  • Crim C, Watkins ML, Bateman ED, et al. Randomized dose-finding study of batefenterol via dry powder inhaler in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:615–629. doi:10.2147/COPD.S190603
  • Wielders PL, Ludwig-Sengpiel A, Locantore N, Baggen S, Chan R, Riley JH. A new class of bronchodilator improves lung function in COPD: a trial with GSK961081. Eur Respir J. 2013;42:972–981. doi:10.1183/09031936.00165712
  • Norris V, Ambery C. Use of propranolol blockade to explore the pharmacology of GSK961081, a bi-functional bronchodilator, in healthy volunteers: results from two randomized trials. Drugs R D. 2014;14:241–251. doi:10.1007/s40268-014-0060-x
  • Norris V, Ambery C. Bronchodilation and safety of supratherapeutic doses of salbutamol or ipratropium bromide added to single dose GSK961081 in patients with moderate to severe COPD. Pulm Pharmacol Ther. 2013;26:574–580. doi:10.1016/j.pupt.2013.03.009
  • Iheanacho I, Zhang S, King D, Rizzo M, Ismaila AS. Economic burden of Chronic Obstructive Pulmonary Disease (COPD): a systematic literature review. Int J Chron Obstruct Pulmon Dis. 2020;15:439–460. doi:10.2147/COPD.S234942
  • Riley CM, Sciurba FC. Diagnosis and outpatient management of Chronic Obstructive Pulmonary Disease: a review. JAMA. 2019;321:786–797. doi:10.1001/jama.2019.0131
  • Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi:10.1016/S0140-6736(12)61728-0
  • Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2163–2196. doi:10.1016/S0140-6736(12)61729-2
  • Siafakas N, Corlateanu A, Fouka E. Phenotyping before starting treatment in COPD? Copd. 2017;14:367–374. doi:10.1080/15412555.2017.1303041
  • Gonηalves I, Guimarγes MJ, van Zeller M, Menezes F, Moita J, Simγo P. Clinical and molecular markers in COPD. Pulmonology. 2018;24:250–259. doi:10.1016/j.pulmoe.2018.02.005
  • Miravitlles M, Soler-Cataluρa JJ, Calle M, Soriano JB. Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur Respir J. 2013;41:1252–1256. doi:10.1183/09031936.00118912
  • Le Rouzic O, Roche N, Cortot AB, et al. Defining the “frequent exacerbator” phenotype in COPD: a hypothesis-free approach. Chest. 2018;153:1106–1115. doi:10.1016/j.chest.2017.10.009
  • Blasi F, Neri L, Centanni S, Falcone F, Di Maria G. Clinical characterization and treatment patterns for the frequent exacerbator phenotype in Chronic Obstructive Pulmonary Disease with severe or very severe airflow limitation. Copd. 2017;14:15–22. doi:10.1080/15412555.2016.1232380
  • Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–1138. doi:10.1056/NEJMoa0909883
  • Singh D, Watz H, Beeh KM, et al. COPD sputum eosinophils: relationship to blood eosinophils and the effect of inhaled PDE4 inhibition. Eur Respir J. 2020;56:2000237. doi:10.1183/13993003.00237-2020
  • Miller BE, Tal-Singer R, Rennard SI, et al. Plasma fibrinogen qualification as a drug development tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease biomarker qualification consortium. Am J Respir Crit Care Med. 2016;193:607–613.
  • Mannino DM. Biomarkers for chronic obstructive pulmonary disease diagnosis and progression: insights, disappointments and promise. Curr Opin Pulm Med. 2018.
  • Bellou V, Belbasis L, Konstantinidis AK, Tzoulaki I, Evangelou E. Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal. BMJ (Clinical Research Ed). 2019;367:l5358.
  • Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of Chronic Obstructive Pulmonary Disease with clinical indicators. Sci Rep. 2020;10:3118. doi:10.1038/s41598-020-60042-1
  • Siddiqui SH, Guasconi A, Vestbo J, et al. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015;192:523–525. doi:10.1164/rccm.201502-0235LE
  • Bafadhel M, Peterson S, De Blas MA, et al. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomised trials. Lancet Respir Med. 2018;6:117–126. doi:10.1016/S2213-2600(18)30006-7
  • Karatas E, Bouchecareilh M. Alpha 1-antitrypsin deficiency: a disorder of proteostasis-mediated protein folding and trafficking pathways. Int J Mol Sci. 2020;21:1493. doi:10.3390/ijms21041493
  • Chorostowska-Wynimko J, Barrecheguren M, Ferrarotti I, Greulich T, Sandhaus RA, Campos M. New patient-centric approaches to the management of alpha-1 antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2020;15:345–355. doi:10.2147/COPD.S234646
  • Toy EL, Beaulieu NU, McHale JM, et al. Treatment of COPD: relationships between daily dosing frequency, adherence, resource use, and costs. Respir Med. 2011;105:435–441. doi:10.1016/j.rmed.2010.09.006