343
Views
12
CrossRef citations to date
0
Altmetric
Review

Long-Acting Muscarinic Antagonists Under Investigational to Treat Chronic Obstructive Pulmonary Disease

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 559-574 | Published online: 08 Dec 2020

References

  • Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2020. Available from: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf. Accessed November 25, 2020.
  • Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol. 2006;101(3):971–985. doi:10.1152/japplphysiol.00313.2006
  • Cazzola M, Page CP, Calzetta L, et al. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64:450–504.
  • Barnes PJ. Muscarinic receptor subtypes in airways. Life Sci. 1993;52(5–6):521–527. doi:10.1016/0024-3205(93)90310-Y
  • Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev. 1999;51:651–690.
  • Calzetta L, Rogliani P, Ora J, et al. LABA/LAMA combination in COPD: a meta-analysis on the duration of treatment. Eur Respir Rev. 2017;26:160043.
  • Calzetta L, Matera MG, Cazzola M. Pharmacological mechanisms leading to synergy in fixed-dose dual bronchodilator therapy. Curr Opin Pharmacol. 2018;40:95–103. doi:10.1016/j.coph.2018.03.011
  • Heusler P, Cussac D, Naline E, et al. Characterization of V0162, a new long-acting antagonist at human M3 muscarinic acetylcholine receptors. Pharmacol Res. 2015;100:117–126. doi:10.1016/j.phrs.2015.07.033
  • Devillier P, Garrigue E, D’Auzers G, et al. V0162 a new long-acting bronchodilator for treatment of chronic obstructive lung diseases: preclinical and clinical results. Respir Res. 2015;16(1):68. doi:10.1186/s12931-015-0227-1
  • Theravance Biopharma. Theravance biopharma and mylan receive FDA approval for YUPELRITM (revefenacin) in adults with chronic obstructive pulmonary disease [media release]. November 9, 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210598Orig1s000Approv.pdf. Accessed November 25, 2020.
  • Hegde SS, Pulido-Rios MT, Luttmann MA, et al. Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect. 2018;6(3):e00400. doi:10.1002/prp2.400
  • Pulido-Rios MT, McNamara A, Obedencio GP, et al. In vivo pharmacological characterization of TD-4208, a novel lung-selective inhaled muscarinic antagonist with sustained bronchoprotective effect in experimental animal models. J Pharmacol Exp Ther. 2013;346(2):241–250. doi:10.1124/jpet.113.203554
  • Heo Y-A. Revefenacin: first global approval. Drugs. 2019;79(1):85–91. doi:10.1007/s40265-018-1036-x
  • Borin MT, Lo A, Barnes CN, et al. Pharmacokinetics and safety of revefenacin in subjects with impaired renal or hepatic function. Int J Chron Obstruct Pulmon Dis. 2019;14:2305–2318. doi:10.2147/COPD.S203709
  • Donohue J, Feldman G, Sethi S, et al. Cardiovascular safety of revefenacin for nebulization: a review of randomized controlled trial data. Chest. 2018;154(4):734A–735A. doi:10.1016/j.chest.2018.08.664
  • Borin MT, Barnes CN, Darpo B, et al. Revefenacin, a long-acting muscarinic antagonist, does not prolong QT interval in healthy subjects: results of a placebo- and positive-controlled thorough QT Study. Clin Pharmacol Drug Dev. 2020;9:130–139.
  • Quinn D, Barnes CN, Yates W, et al. Pharmacodynamics, pharmacokinetics and safety of revefenacin (TD-4208), a long-acting muscarinic antagonist, in patients with chronic obstructive pulmonary disease (COPD): results of two randomized, double-blind, Phase 2 studies. Pulm Pharmacol Ther. 2018;48:71–79. doi:10.1016/j.pupt.2017.10.003
  • Pudi KK, Barnes CN, Moran EJ, et al. A 28-day, randomized, double-blind, placebo-controlled, parallel group study of nebulized revefenacin in patients with chronic obstructive pulmonary disease. Respir Res. 2017;18(1):182. doi:10.1186/s12931-017-0647-1
  • Donohue JF, Kerwin E, Barnes CN, et al. Efficacy of revefenacin, a long-acting muscarinic antagonist for nebulized therapy, in patients with markers of more severe COPD: a post hoc subgroup analysis. BMC Pulm Med. 2020;20(1):134. doi:10.1186/s12890-020-1156-4
  • Siler TM, Moran EJ, Barnes CN, et al. Safety and efficacy of revefenacin and formoterol in sequence and combination via a standard jet nebulizer in patients with chronic obstructive pulmonary disease: a phase 3b, randomized, 42-Day Study. Chronic Obstr Pulm Dis. 2020;7:99–106.
  • Cazzola M, Page C, Matera MG. Long-acting muscarinic receptor antagonists for the treatment of respiratory disease. Pulm Pharmacol Ther. 2013;26(3):307–317. doi:10.1016/j.pupt.2012.12.006
  • Villetti G, Pastore F, Bergamaschi M, et al. Bronchodilator activity of (3R)-3-[[[(3-fluorophenyl)[(3,4,5-trifluorophenyl)methyl]amino] carbonyl]oxy]-1-[2-oxo-2-(2-thienyl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide (CHF5407), a potent, long-acting, and selective muscarinic M3 Receptor antagonist. J Pharmacol Exp Ther. 2010;335(3):622–635. doi:10.1124/jpet.110.170035
  • Jiang J-X, Cao R, Deng W-D, et al. Characterization of bencycloquidium bromide, a novel muscarinic M3 receptor antagonist in guinea pig airways. Eur J Pharmacol. 2011;655(1–3):74–82. doi:10.1016/j.ejphar.2011.01.017
  • Cao R, Dong X-W, Jiang J-X, et al. M3 muscarinic receptor antagonist bencycloquidium bromide attenuates allergic airway inflammation, hyperresponsiveness and remodeling in mice. Eur J Pharmacol. 2011;655(1–3):83–90. doi:10.1016/j.ejphar.2011.01.024
  • Sun L, Ding L, Wang Y, et al. Pharmacokinetics, safety and tolerability of bencycloquidium bromide, a novel selective muscarinic M1/M3 receptor antagonist, after single and multiple intranasal doses in healthy Chinese subjects: an open-label, single-center, first-in-Human Study. Drugs R D. 2012;12(1):17–28. doi:10.2165/11599330-000000000-00000
  • Jiang Z, Xiao H, Liu S, et al. Bencycloquidium bromide nasal spray is effective and safe for persistent allergic rhinitis: a phase III, multicenter, randomized, double-blinded, placebo-controlled clinical trial. Eur Arch Otorhinolaryngol. 2020;277(11):3067–3077. doi:10.1007/s00405-020-06183-5
  • Zhang S-J, Jiang J-X, Ren -Q-Q, et al. Effects of the inhalation of the M3 receptor antagonist bencycloquidium bromide in a mouse cigarette smoke-induced airway inflammation model. Drug Dev Res. 2015;76(3):123–131. doi:10.1002/ddr.21248
  • Cazzola M, Rogliani P, Segreti A, et al. An update on bronchodilators in phase I and II clinical trials. Expert Opin Investig Drugs. 2012;21(10):1489–1501. doi:10.1517/13543784.2012.710602
  • Jorup C, Bengtsson T, Strandgården K, et al. Transient paradoxical bronchospasm associated with inhalation of the LAMA AZD9164: analysis of two phase I, randomised, double-blind, placebo-controlled studies. BMC Pulm Med. 2014;14(1):52. doi:10.1186/1471-2466-14-52
  • Mete A, Bowers K, Chevalier E, et al. The discovery of AZD9164, a novel muscarinic M3 antagonist. Bioorg Med Chem Lett. 2011;21(24):7440–7446. doi:10.1016/j.bmcl.2011.10.002
  • Bjermer L, Bengtsson T, Jorup C, et al. Local and systemic effects of inhaled AZD9164 compared with tiotropium in patients with COPD. Respir Med. 2013;107(1):84–90. doi:10.1016/j.rmed.2012.09.014
  • Mete A, Bowers K, Bull RJ, et al. The design of a novel series of muscarinic receptor antagonists leading to AZD8683, a potential inhaled treatment for COPD. Bioorg Med Chem Lett. 2013;23(23):6248–6253. doi:10.1016/j.bmcl.2013.09.092
  • Kobayashi F, Yageta Y, Segawa M, et al. Effects of imidafenacin (KRP-197/ONO-8025), a new anti-cholinergic agent, on muscarinic acetylcholine receptors. Arzneimittelforschung. 2011;57(02):92–100. doi:10.1055/s-0031-1296589
  • Machida K, Kawayama T, Kinoshita M, et al. Imidafenacin, an orally active muscarinic receptor antagonist, improves pulmonary function in patients with chronic obstructive pulmonary disease: a multicenter, randomized, double-blind, placebo-controlled 3×3 crossover phase II trial. Int J Chron Obstruct Pulmon Dis. 2019;14:2175–2184. doi:10.2147/COPD.S223002
  • Oleson L, Turncliff R, Silverman B. ALKS 27 (trospium inhalation powder) improves lung function following single administration in subjects with COPD (abstract). Am J Respir Crit Care Med. 2010;181:A4457.
  • Singh D, Fuhr R, Jimenez L, et al. A randomized trial of dual-acting bronchodilator AZD8871 for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2019;199(10):1282–1284. doi:10.1164/rccm.201812-2345LE
  • Hegde SS, Hughes AD, Chen Y, et al. Pharmacologic characterization of GSK-961081 (TD-5959), a first-in-class inhaled bifunctional bronchodilator possessing muscarinic receptor antagonist and β2-adrenoceptor agonist properties. J Pharmacol Exp Ther. 2014;351(1):190–199. doi:10.1124/jpet.114.216861
  • Ambery C, Young G, Fuller T, et al. Pharmacokinetics, excretion, and mass balance of [14C]-batefenterol following a single microtracer intravenous dose (concomitant to an inhaled dose) or oral dose of batefenterol in healthy men. Clin Pharmacol Drug Dev. 2018;7(8):901–910. doi:10.1002/cpdd.616
  • Wielders PLML, Ludwig-Sengpiel A, Locantore N, et al. A new class of bronchodilator improves lung function in COPD: a trial with GSK961081. Eur Respir J. 2013;42(4):972–981. doi:10.1183/09031936.00165712
  • Ambery CL, Wielders P, Ludwig-Sengpiel A, et al. Population pharmacokinetics and pharmacodynamics of GSK961081 (batefenterol), a muscarinic antagonist and β2-agonist, in moderate-to-severe COPD patients: substudy of a randomized trial. Drugs R D. 2015;15(3):281–291. doi:10.1007/s40268-015-0104-x
  • Bateman ED, Kornmann O, Ambery C, et al. Pharmacodynamics of GSK961081, a bi-functional molecule, in patients with COPD. Pulm Pharmacol Ther. 2013;26(5):581–587. doi:10.1016/j.pupt.2013.03.015
  • Norris V, Ambery C. Bronchodilation and safety of supratherapeutic doses of salbutamol or ipratropium bromide added to single dose GSK961081 in patients with moderate to severe COPD. Pulm Pharmacol Ther. 2013;26(5):574–580. doi:10.1016/j.pupt.2013.03.009
  • Crim C, Watkins ML, Bateman ED, et al. Randomized dose-finding study of batefenterol via dry powder inhaler in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2015;15:615–629. doi:10.2147/COPD.S190603
  • Ambery C, Young G, Fuller T, et al. Open-label, crossover study to determine the pharmacokinetics of fluticasone furoate and batefenterol when administered alone, in combination, or concurrently. Clin Pharmacol Drug Dev. 2019;8(2):188–197. doi:10.1002/cpdd.603
  • Norris V, Ambery C, Riley T. Pharmacokinetics and pharmacodynamics of GSK961081, a novel inhaled muscarinic antagonist β 2 -agonist, and fluticasone propionate administered alone, concurrently and as a combination blend formulation in healthy volunteers: clinical pharmacology in drug development. Clin Pharmacol Drug Dev. 2014;3:305–313.
  • Ambery C, Riddell K, Daley-Yates P. Open-label, randomized, 6-way crossover, single-dose study to determine the pharmacokinetics of batefenterol (GSK961081) and fluticasone furoate when administered alone or in combination. Clin Pharmacol Drug Dev. 2016;5(5):399–407. doi:10.1002/cpdd.274
  • Crim C, Gotfried M, Spangenthal S, et al. A randomized, controlled, repeat-dose study of batefenterol/fluticasone furoate compared with placebo in the treatment of COPD. BMC Pulm Med. 2020;20(1):119. doi:10.1186/s12890-020-1153-7
  • Norman P. Novel dihydroquinoline-based MABAs; clues to the identity of LAS-190792: evaluation of WO20111411802. Expert Opin Ther Pat. 2012;22(2):185–192. doi:10.1517/13543776.2012.655270
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological preclinical characterization of LAS190792, a novel inhaled bifunctional muscarinic receptor antagonist /β 2 -adrenoceptor agonist (MABA) molecule. Pulm Pharmacol Ther. 2017;46:1–10. doi:10.1016/j.pupt.2017.07.003
  • Astbury C, Pujol H, Massana È, et al. A Randomized Placebo Controlled Trial of AZD8999 (LAS190792) a Novel Dual Acting Bronchodilator in Asthmatics. Airway Pharmacology and Treatment. European Respiratory Society; 2017:OA4406. Available from: http://erj.ersjournals.com/lookup/doi/10.1183/1393003.congress-2017.OA4406. Accessed November 25, 2020.
  • Milara J, Contreras S, de Diego A, et al. In vitro anti-inflammatory effects of AZD8999, a novel bifunctional muscarinic acetylcholine receptor antagonist /β2-adrenoceptor agonist (MABA) compound in neutrophils from COPD patients. PLoS One. 2019;14(1):e0210188. doi:10.1371/journal.pone.0210188
  • Aparici M, Carcasona C, Ramos I, et al. Pharmacological profile of AZD8871 (LAS191351), a novel inhaled dual M3 receptor antagonist/β2-adrenoceptor agonist molecule with long-lasting effects and favorable safety profile. J Pharmacol Exp Ther. 2019;370:127–136. doi:10.1124/jpet.118.255620
  • Calzetta L, Ritondo BL, Matera MG, et al. Investigational treatments in phase I and II clinical trials: a systematic review in chronic obstructive pulmonary disease (COPD). Expert Opin Investig Drugs. 2020;1–16.
  • Jimenez L, Astbury C, Seoane B, et al. A Randomized Placebo Controlled Trial of AZD8871 a Novel Dual Acting Bronchodilator in Asthmatics. Airway Pharmacology and Treatment. European Respiratory Society; 2017:PA1811. Available from: http://erj.ersjournals.com/lookup/doi/10.1183/1393003.congress-2017.PA1811. Accessed November 25, 2020.
  • Norman P. Evaluation of WO-2012085582 and WO-2012085583 two identified MABAs: backups to AZD-2115? Expert Opin Ther Pat. 2012;22(11):1377–1383. doi:10.1517/13543776.2012.718761
  • Cselényi Z, Jucaite A, Kristensson C, et al. Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung — a test-retest PET study in control subjects. EJNMMI Res. 2020;10(1):59. doi:10.1186/s13550-020-00634-0
  • Carnini C, Cesari N, Rudolph K, et al. Bronchoprotective Activity and Safety Evaluation of the Novel Antimuscarinic/Β2 Agonist (MABA) CHF6366 in Dogs. Airway Pharmacology and Treatment. European Respiratory Society; 2017:PA1804. Available from: http://erj.ersjournals.com/lookup/doi/10.1183/1393003.congress-2017.PA1804. Accessed November 25, 2020.
  • Miglietta D, Carnini C, Bassani F, et al. CHF6366: Characterisation of the Bronchoprotective Effect of a Novel MABA Compound in the Experimental Bronchospasm Model in Anaesthetised Guinea Pigs. Airway Pharmacology and Treatment. European Respiratory Society; 2017:OA4405. Available from: http://erj.ersjournals.com/lookup/doi/10.1183/1393003.congress-2017.OA4405. Accessed November 25, 2020.
  • McNamara A, Steinfeld T, Pulido-Rios MT, et al. Preclinical efficacy of THRX-200495, a dual pharmacology muscarinic receptor antagonist and β(2)-adrenoceptor agonist (MABA). Pulm Pharmacol Ther. 2012;25:357–363. doi:10.1016/j.pupt.2012.06.007
  • Barnes PJ, Bonini S, Seeger W, et al. Barriers to new drug development in respiratory disease. Eur Respir J. 2015;45(5):1197–1207. doi:10.1183/09031936.00007915
  • Cazzola M, Calzetta L, Ora J, et al. Searching for the synergistic effect between aclidinium and formoterol: from bench to bedside. Respir Med. 2015;109(10):1305–1311. doi:10.1016/j.rmed.2015.08.005
  • Ismaila AS, Huisman EL, Punekar YS, et al. Comparative efficacy of long-acting muscarinic antagonist monotherapies in COPD: a systematic review and network meta-analysis. Int J Chron Obstruct Pulmon Dis. 2015;10:2495–2517. doi:10.2147/COPD.S92412
  • Cazzola M, Lopez-Campos J-L, Puente-Maestu L. The MABA approach: a new option to improve bronchodilator therapy. Eur Respir J. 2013;42(4):885–888. doi:10.1183/09031936.00067013