155
Views
2
CrossRef citations to date
0
Altmetric
Review

Experimental and Investigational Pharmacotherapy for Psoriatic Arthritis: Drugs of the Future

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 487-502 | Published online: 16 Nov 2020

References

  • Chimenti MS, Caso F, Alivernini S, et al. Amplifying the concept of psoriatic arthritis: the role of autoimmunity in systemic psoriatic disease. Autoimmun Rev. 2019;18(6):565–575. doi:10.1016/j.autrev.2018.11.007
  • Scarpa R, Caso F, Costa L, et al. Psoriatic disease: clinical staging. J Rheumatol. 2015;93:24–26.
  • Chimenti MS, Perricone C, Novelli L, et al. Interaction between microbiome and host genetics in psoriatic arthritis. Autoimmun Rev. 2018;17:276–283.
  • Lambert JR, Wright V. Eye inflammation in psoriatic arthritis. Ann Rheum Dis. 1976;35:354–356.
  • Chimenti MS, Triggianese P, Salandri G, et al. A Multimodal Eye Assessment in Psoriatic Arthritis Patients sine Psoriasis: evidence for a Potential Association with Systemic Inflammation. J Clin Med. 2020;9:719.
  • Navarini L, Sperti M, Currado D, et al. A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis. Rheumatology. 2020;59:1767–1769.
  • Navarini L, Margiotta DPE, Costa L, et al. Performance and calibration of the algorithm ASSIGN in predicting cardiovascular disease in Italian patients with psoriatic arthritis. Clin Rheumatol. 2019;38:971–976.
  • Navarini L, Margiotta DPE, Caso F, et al. Performances of five risk algorithms in predicting cardiovascular events in patients with Psoriatic Arthritis: an Italian bicentric study. PLoS One. 2018;13:10.
  • Costa L, Caso F, D’Elia L, et al. Psoriatic arthritis is associated with increased arterial stiffness in the absence of known cardiovascular risk factors: a case control study. Clin Rheumatol. 2012;31:711–715.
  • Caso F, Navarini L, Carubbi F, et al. Mediterranean diet and Psoriatic Arthritis activity: a multicenter cross-sectional study. Rheumatol Int. 2020;40(6):951–958. doi:10.1007/s00296-019-04458-7
  • Costa L, Caso F, Ramonda R, et al. Metabolic syndrome and its relationship with the achievement of minimal disease activity state in psoriatic arthritis patients: an observational study. Immunol Res. 2014;61:147–153. doi:10.1007/s12026-014-8595-z
  • Caso F, Chimenti MS, Navarini L, et al. Metabolic Syndrome and psoriatic arthritis: considerations for the clinician. Expert Rev Clin Immunol. 2020;16(4):409–420. doi:10.1080/1744666X.2020.1740593
  • Caso F, Del Puente A, Oliviero F, et al. Metabolic Syndrome in Psoriatic Arthritis: The Interplay with Cutaneous Involvement. Evidences from Literature and a Recent Cross-Sectional Study. Vol. 37. Springer London: Clinical Rheumatology; 2018:579–586.
  • Caso F, Costa L, Chimenti MS, Navarini L, Punzi L. Pathogenesis of Psoriatic Arthritis. Crit Rev Immunol. 2019;39:361–377.
  • Caso F, Costa L, Nucera V, et al. From Autoinflammation to Autoimmunity: Old and Recent Findings. Vol. 37. Springer London: Clinical Rheumatology; 2018:2305–2321.
  • Moll JMH, Wright V. Psoriatic arthritis. Semin Arthritis Rheum. 1973;3(1):55–78.
  • Scarpa R, Caso F, Costa L, et al. Psoriatic Disease 10 Years Later. J Rheumatol. 2017;44(9):1298–1301.
  • Caso F, Costa L, Peluso R, Del Puente A, Scarpa R. Psoriatic Arthritis. In: Mosaic of Autoimmunity. Academic Press; 2019:527–540.
  • Kehl AS, Corr M, Weisman MH. Review: enthesitis: new Insights Into Pathogenesis, Diagnostic Modalities, and Treatment. Arthritis Rheumatol. 2016;68(2):312–322.
  • Rossini M, Epis OM, Tinazzi I, et al. Role of the IL-23 pathway in the pathogenesis and treatment of enthesitis in psoriatic arthritis.Expert. Opin Biol Ther. 2020;20(7):787–798.
  • Kaeley GS, Eder L, Aydin SZ, Gutierrez M, Bakewell C. Dactylitis: A hallmark of psoriatic arthritis. Semin Arthritis Rheum. 2018;48(2):263–273.
  • Girolimetto N, Costa L, Mancarella L, et al. Symptomatic psoriatic dactylitis is associated with ultrasound determined extra-synovial inflammatory features and shorter disease duration. Clin Rheumatol. 2019;38(3):903–911.
  • Girolimetto N, MacChioni P, Tinazzi I, et al. Ultrasonographic evidence of predominance of acute extracapsular and chronic intrasynovial patterns in 100 cases of psoriatic hand dactylitis. J Rheumatol. 2020;47:227–233.
  • Brockbank JE, Stein M, Schentag CT, Gladman DD. Dactylitis in psoriatic arthritis: A marker for disease severity? Ann Rheum Dis. 2005;64:188–190.
  • Napolitano M, Caso F, Scarpa R, et al. Psoriatic arthritis and psoriasis: differential diagnosis. Clin Rheumatol. 2016;35(8):1893–1901.
  • Soscia E, Scarpa R, Cimmino MA, et al. Magnetic resonance imaging of nail unit in psoriatic arthritis. J Rheumatol Suppl. 2009;83:42–45.
  • Soscia E, Sirignano C, Catalano O, et al. New developments in magnetic resonance imaging of the nail unit. J Rheumatt Alol Suppl. 2012;89:49–53.
  • Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64:ii14–7.
  • Ficjan A, Husic R, Gretler J, et al. Ultrasound composite scores for the assessment of inflammatory and structural pathologies in Psoriatic Arthritis (PsASon-Score). Arthritis Res Ther. 2014;16:1.
  • Tan AL, Fukuba E, Halliday NA, et al. High-resolution MRI assessment of Dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann Rheum Dis. 2015;74(1):185–189.
  • D’Agostino MA, Aegerter P, Bechara K, et al. How to diagnose spondyloarthritis early? Accuracy of peripheral enthesitis detection by power Doppler ultrasonography. Ann Rheum Dis. 2011;70(8):1433–1440.
  • Sudoł-Szopińska I, Pracoń G. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography. J Ultrason. 2016;16(65):163–174.
  • Wiell C, Szkudlarek M, Hasselquist M, et al. Ultrasonography, magnetic resonance imaging, radiography, and clinical assessment of inflammatory and destructive changes in fingers and toes of patients with psoriatic arthritis. Arthritis Res Ther. 2007;9(6):R119.
  • Giacomelli R, Afeltra A, Alunno A, et al. Guidelines for biomarkers in autoimmune rheumatic diseases - evidence based analysis. Autoimmun Rev. 2019;18(1):93–106.
  • Caso F, Costa L, Atteno M, et al. Simple clinical indicators for early psoriatic arthritis detection. Springerplus. 2014;3:1–3.
  • Tillett W, Costa L, Jadon D, et al. The ClASsification for Psoriatic ARthritis (CASPAR) criteria - A retrospective feasibility, sensitivity, and specificity study. J Rheumatol. 2012;39(1):154–156.
  • Caso F, Tasso M, Chimenti MS, et al. Late-Onset and Elderly Psoriatic Arthritis: clinical Aspects and Management. Drugs Aging. 2019;36(10):909–925.
  • Tucker LJ, Coates LC, Helliwell PS. Assessing Disease Activity in Psoriatic Arthritis: A Literature Review. Rheumatol Ther. 2019;6(1):23–32.
  • Mease PJ. Measures of psoriatic arthritis: tender and Swollen Joint Assessment, Psoriasis Area and Severity Index (PASI), Nail Psoriasis Severity Index (NAPSI), Modified Nail Psoriasis Severity Index (mNAPSI), Mander/Newcastle Enthesitis Index (MEI), Leeds Enthesitis Index (LEI), Spondyloarthritis Research Consortium of Canada (SPARCC), Maastricht Ankylosing Spondylitis Enthesis Score (MASES), Leeds Dactylitis Index (LDI), Patient Global for Psoriatic Arthritis, Dermatology Life Quality Index (DLQI), Psoriatic Arthritis Quality of Life (PsAQOL), Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), Psoriatic Arthritis Response Criteria (PsARC), Psoriatic Arthritis Joint Activity Index (PsAJAI), Disease Activity in Psoriatic Arthritis (DAPSA), and Composite Psoriatic Disease Activity Index (CPDAI). Arthritis Care Res (Hoboken). 2011;63:S64–85.
  • Scarpa R, Spondyloarthritis: CF. Which composite measures to use in psoriatic arthritis? Nat Rev Rheumatol. 2018;14(3):125–126.
  • Ritchlin CT, Colbert RA, Gladman DD. Psoriatic Arthritis. N Engl J Med. 2017;376(10):957–970.
  • Helliwell PS, Deodhar A, Gottlieb AB, et al. Composite Measures of Disease Activity in Psoriatic Arthritis: comparative Instrument Performance Based on the Efficacy of Guselkumab in an Interventional Phase 2 Trial. Arthritis Care Res (Hoboken). 2019. doi:10.1002/acr.24046
  • Coates LC, Kavanaugh A, Mease PJ, et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 Treatment Recommendations for Psoriatic Arthritis. Arthritis Rheumatol. 2016;68(5):1060–1071.
  • Gossec L, Baraliakos X, Kerschbaumer A, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020;79(6):700–712.
  • Singh JA, Guyatt G, Ogdie A, et al. Special Article: 2018 American College of Rheumatology/National Psoriasis Foundation Guideline for the Treatment of Psoriatic Arthritis. Arthritis Care Res. 2019;71(1):2–29.
  • Scarpa R, Costa L, Atteno M, Caso F, Lubrano E. Treatment Options: NSAIDs and DMARDs. In: Advances in the Management of Psoriatic Arthritis. 2013:63–70.
  • Atzeni F, Caso F, Costa L, Sarzi-Puttini P, Masala IF. Conventional and biological DMARDs in systemic rheumatic diseases: perioperative risk/benefit management. Handbook of systemic autoimmune diseases. Surg Rheumatic Musculoskeletal Dis. 2018;161–182.
  • Caso F, Costa L, Del Puente A, et al. Pharmacological treatment of spondyloarthritis: exploring the effectiveness of nonsteroidal anti-inflammatory drugs, traditional disease-modifying antirheumatic drugs and biological therapies. Ther Adv Chronic Dis. 2015;6:328–338.
  • Caso F, Lubrano E, Del Puente A, et al. Progress in understanding and utilizing TNF-α inhibition for the treatment of psoriatic arthritis. Expert Rev Clin Immunol. 2016;12(3):315–331.
  • D’Angelo S, Cantini F, Ramonda R, et al. Effectiveness of Adalimumab for the Treatment of Psoriatic Arthritis: an Italian Real-Life Retrospective Study. Front Pharmacol. 2019;10:1497.
  • Megna M, Balato A, Napolitano M, et al. Psoriatic disease treatment nowadays: unmet needs among the “jungle of biologic drugs and small molecules”. Clin Rheumatol. 2018;37(7):1739–1741.
  • Scarpa R, Costa L, Atteno M, et al. Psoriatic arthritis: advances in pharmacotherapy based on molecular target. Expert Opin Pharmacother. 2013;14(17):2311–2313.
  • Caso F, Del Puente A, Peluso R, et al. Emerging drugs for psoriatic arthritis. Expert Opin Emerg Drugs. 2016;21(1):69–79.
  • Costa L, Caso F, Del Puente A, Di Minno MND, Peluso R, Scarpa R. Incidence of malignancies in a cohort of psoriatic arthritis patients taking traditional disease modifying antirheumatic drug and tumor necrosis factor inhibitor therapy: an observational study. J Rheumatol. 2016;43(12):2149–2154.
  • Atteno M, Costa L, Matarese A, et al. The use of TNF-α blockers in psoriatic arthritis patients with latent tuberculosis infection. Clin Rheumatol. 2014;33(4):543–547.
  • Caso F, Cantarini L, Morisco F, et al. Current evidence in the field of the management with TNF-α inhibitors in psoriatic arthritis and concomitant hepatitis C virus infection. Expert Opin Biol Ther. 2015;15(5):641–650.
  • Costa L, Caso F, Atteno M, et al. Long-term safety of anti-TNF-α in PsA patients with concomitant HCV infection: a retrospective observational multicenter study on 15 patients. Clin Rheumatol. 2014;33(2):273–276.
  • Caso F, Costa L, Del Puente A, Scarpa R. Psoriatic arthritis and TNF inhibitors: advances on effectiveness and toxicity. Expert Opin Biol Ther. 2015;15(1):1–2.
  • Costa L, Perricone C, Chimenti MS, et al. Switching Between Biological Treatments in Psoriatic Arthritis: A Review of the Evidence. Drugs R D. 2017;17(4):509–522.
  • Chimenti MS, Ortolan A, Lorenzin M, et al. Effectiveness and safety of ustekinumab in naïve or TNF-inhibitors failure psoriatic arthritis patients: a 24-month prospective multicentric study. Clin Rheumatol. 2018;37(2):397–405.
  • Navarini L, Costa L, Tasso M, et al. Retention rates and identification of factors associated with anti-TNFα, anti-IL17, and anti-IL12/23R agents discontinuation in psoriatic arthritis patients: results from a real-world clinical setting. Clin Rheumatol. 2020;39(9):2663–2670.
  • Chimenti MS, Triggianese P, De Martino E, et al. An update on pathogenesis of psoriatic arthritis and potential therapeutic targets. Expert Rev Clin Immunol. 2019;15(8):823–836.
  • Sakkas LI, Zafiriou E, Bogdanos DP. Mini Review: new Treatments in Psoriatic Arthritis. Focus on the IL-23/17 Axis. Front Pharmacol. 2019;10:872.
  • Maguire S, Sengupta R, The OF. Future of Axial Spondyloathritis Treatment. Rheum Dis Clin North Am. 2020;46(2):357–365.
  • Coates LC, Mease PJ, Gossec L, et al. Minimal Disease Activity Among Active Psoriatic Arthritis Patients Treated With Secukinumab: 2-Year Results From a Multicenter, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Phase III Study. Arthritis Care Res (Hoboken). 2018;70(10):1529–1535.
  • McInnes IB, Mease PJ, Ritchlin CT, et al. Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology. 2017;56(11):1993–2003.
  • Mease P, van der Heijde D, Landewé R, et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann Rheum Dis. 2018;77(6):890–897.
  • Nash P, Mease PJ, McInnes IB, et al. FUTURE 3 study group. Efficacy and safety of secukinumab administration by autoinjector in patients with psoriatic arthritis: results from a randomized, placebo-controlled trial (FUTURE 3). Arthritis Res Ther. 2018;20(1):47.
  • Mease PJ, Smolen JS, Behrens F, et al. SPIRIT H2H study group. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naïve patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann Rheum Dis. 2020;79(1):123–131.
  • Gottlieb AB, Strand V, Kishimoto M, et al. Ixekizumab improves patient-reported outcomes up to 52 weeks in bDMARD-naïve patients with active psoriatic arthritis (SPIRIT-P1). Rheumatology. 2018;57(10):1777–1788.
  • van der Heijde D, Gladman DD, Kishimoto M, et al. Efficacy and Safety of Ixekizumab in Patients with Active Psoriatic Arthritis: 52-week Results from a Phase III Study (SPIRIT-P1). J Rheumatol. 2018;45(3):367–377.
  • Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–2306.
  • ClinicalTrials.gov. Identifier: NCT02024646
  • ClinicalTrials.gov. Identifier: NCT02029495
  • Brodalumab in psoriatic arthritis (PsA). 24-week results from the phase III AMVISON-1 and −2 trials. J Am Acad Dermatol. 2019;81(4):AB28.
  • Ritchlin CT, Kavanaugh A, Merola JF, et al. Bimekizumab in patients with active psoriatic arthritis: results from a 48-week, randomised, double-blind, placebo-controlled, dose-ranging phase 2b trial. Lancet. 2020;395(10222):427–440.
  • ClinicalTrials.gov. Identifier: NCT03896581
  • ClinicalTrials.gov. Identifier: NCT03895203
  • Mease PJ, Genovese MC, Weinblatt ME, et al. Phase II Study of ABT-122, a Tumor Necrosis Factor- and Interleukin-17A-Targeted Dual Variable Domain Immunoglobulin, in Patients With Psoriatic Arthritis With an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2018;70(11):1778–1789.
  • Toussi A, Maverakis N, Le ST, et al. Updated therapies for the management of psoriatic arthritis. Clin Immunol. 2020;108536.
  • Deodhar A, Gottlieb AB, Boehncke WH, et al. Efficacy and safety of Guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2018;391(10136):2213–2224.
  • Deodhar A, Helliwell PS, Boehncke WH, et al. Guselkumab in patients with active psoriatic arthritis who were biologic-naive or had previously received TNFα inhibitor treatment (DISCOVER-1): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1115–1125.
  • Mease PJ, Rahman P, Gottlieb AB, et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395(10230):1126–1136.
  • ClinicalTrials.gov. Identifier: NCT03796858
  • ClinicalTrials.gov. Identifier: NCT02980692
  • ClinicalTrials.gov. Identifier: NCT04314531
  • ClinicalTrials.gov. Identifier: NCT04314544
  • ClinicalTrials.gov. Identifier: NCT03675308
  • ClinicalTrials.gov. Identifier: NCT03671148
  • Mease PJ, Kellner H, Morita A, et al. OP0307 Efficacy and safety of Risankizumab, a selective il-23p19 inhibitor, in patients with active psoriatic arthritis over 24 weeks: results from a phase 2 trial. Ann Rheum Dis. 2018;77(2):200–201.
  • Fiocco U, Martini V, Accordi B, et al. Ex Vivo Signaling Protein Mapping in T Lymphocytes in the Psoriatic Arthritis Joints. J Rheumatol Suppl. 2015;93:48–52.
  • Fiocco U, Martini V, Accordi B, et al. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis. Clin Rheumatol. 2015;34(9):1571–1580.
  • Fiocco U, Accordi B, Martini V, et al. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. Immunol Res. 2014;58(1):61–69.
  • Gao W, McGarry T, Orr C, et al. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis. 2016;75:311–315.
  • Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318–328.
  • Berekmeri A, Mahmood F, Wittmann M, Helliwell P. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018;14(9):719–730.
  • Chimenti MS, Perricone C, Conigliaro P, et al. Tackling the autoimmune side in Spondyloarthritis: A systematic review. Autoimmun Rev. 2020:102648. doi:10.1016/j.autrev.2020.102648
  • Caso F, Navarini L, Ruscitti P, et al. Targeted synthetic pharmacotherapy for psoriatic arthritis: state of the art. Expert Opin Pharmacother. 2020;21(7):785–796.
  • Costa L, Del Puente A, Peluso R, et al. Small molecule therapy for managing moderate to severe psoriatic arthritis. Expert Opin Pharmacother. 2017;18(15):1557–1567.
  • Chiricozzi A, Saraceno R, Novelli L, et al. Small molecules and antibodies for the treatment of psoriasis: a patent review (2010-2015). Expert Opin Ther Pat. 2016;26(7):757–766. doi:10.1080/13543776.2016.1192129
  • Chimenti MS, D’Antonio A, Conigliaro P, et al. An Update for the Clinician on Biologics for the Treatment of Psoriatic Arthritis. Biologics. 2020;14:53–75.
  • Paik J, Deeks ED. Tofacitinib: A Review in Psoriatic Arthritis. Drugs. 2019;79(6):655–663. doi:10.1007/s40265-019-01091-3
  • Jamilloux Y, El Jammal T, Vuitton L, et al. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. doi:10.1016/j.autrev.2019.102390
  • Song GG, Lee YH. Comparison of the Efficacy and Safety of Tofacitinib and Apremilast in Patients with Active Psoriatic Arthritis: A Bayesian Network Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig. 2019;39(5):421–428. doi:10.1007/s40261-019-00765-w
  • Asahina A, Etoh T, Igarashi A, et al. Oral tofacitinib efficacy, safety and tolerability in Japanese patients with moderate to severe plaque psoriasis and psoriatic arthritis: A randomized, double-blind, phase 3 study. J Dermatol. 2016;43(8):869–880. doi:10.1111/1346-8138.13258
  • Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377(16):1537–1550. doi:10.1056/NEJMoa1615975
  • Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377(16):1525–1536. doi:10.1056/NEJMoa1615977
  • Nash P, Coates LC, Fleischmann R, et al. Efficacy of Tofacitinib for the Treatment of Psoriatic Arthritis: pooled Analysis of Two Phase 3 Studies. Rheumatol Ther. 2018;5(2):567–582. doi:10.1007/s40744-018-0131-5
  • Strand V, De Vlam K, Covarrubias-Cobos JA, et al. Effect of tofacitinib on patient-reported outcomes in patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors in the Phase III, randomised controlled trial: OPAL beyond. RMD Open. 2019;5:1.
  • Strand V, De Vlam K, Covarrubias-Cobos JA, et al. Tofacitinib or adalimumab versus placebo: patient-reported outcomes from OPAL Broaden – A phase III study of active psoriatic arthritis in patients with an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open. 2019;5:1.
  • Van Der Heijde D, Gladman DD, FitzGerald O, et al. Radiographic progression according to baseline C-reactive protein levels and other risk factors in psoriatic arthritis treated with tofacitinib or adalimumab. J Rheumatol. 2019;46(9):1089–1096. doi:10.3899/jrheum.180971
  • Nash P, Coates LC, Kivitz AJ, et al. Safety and Efficacy of Tofacitinib in Patients with Active Psoriatic Arthritis: interim Analysis of OPAL Balance, an Open-Label, Long-Term Extension Study. Rheumatol Ther. 2020;7(3):553–580. doi:10.1007/s40744-020-00209-4
  • Mease P, Coates LC, Helliwell PS, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10162):2367–2377. doi:10.1016/S0140-6736(18)32483-8
  •  ClinicalTrials.gov. Identifier: NCT04115748
  • ClinicalTrials.gov. Identifier: NCT04115839
  • ClinicalTrials.gov. Identifier: NCT03104400.
  • Mcinnes I, Anderson J, Magrey M, et al. Efficacy and safety of upadacitinib versus placebo and adalimumab in patients with active psoriatic arthritis and inadequate response to non-biologic disease-modifying anti-rheumatic drugs (SELECT-PSA-1): a double-blind, randomized controlled phase 3 trial. Ann Rheum Dis. 2020;79(1):12–13.
  • ClinicalTrials.gov. Identifier: NCT03104374
  • Genovese MC, Lertratanakul A, Anderson J, et al. Efficacy and safety of upadacitinib in patients with active psoriatic arthritis and inadequate response to biologic disease-modifying anti-rheumatic drugs (SELECT-PSA-2): a double-blind, randomized controlled phase 3 trial. Ann Rheum Dis Ann Rheum Dis. 2020;79(1):139.
  • Burke JR, Cheng L, Gillooly KM, et al. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med. 2019;11(502):eaaw1736. doi:10.1126/scitranslmed.aaw1736
  • Velazquez L, Fellous M, Stark GR, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–322. doi:10.1016/0092-8674(92)90105-L
  • Karaghiosoff M, Steinborn R, Kovarik P, et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol. 2003;4(5):471–477. doi:10.1038/ni910
  • ClinicalTrials.gov. Identifier: NCT03881059
  • Buerger C. Epidermal mTORC1 Signaling Contributes to the Pathogenesis of Psoriasis and Could Serve as a Therapeutic Target. Front Immunol. 2018;9:2786. doi:10.3389/fimmu.2018.02786
  • Reitamo S, Spuls P, Sassolas B, et al. Griffiths CE Sirolimus European Psoriasis Study Group. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: A randomized controlled trial. Br J Dermatol. 2001;145(3):438–445. doi:10.1046/j.1365-2133.2001.04376.x
  • Buerger C, Malisiewicz B, Eiser A, Hardt K, Boehncke WH. Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br J Dermatol. 2013;169(1):156–159. doi:10.1111/bjd.12271
  • Raychaudhuri SK, Raychaudhuri SP. mTOR Signaling Cascade in Psoriatic Disease: double Kinase mTOR Inhibitor a Novel Therapeutic Target. Indian J Dermatol. 2014;59(1):67–70.
  • Pandya VB, Kumar S, Sachchidanand SR, Sharma RC, Desai RC. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: hits and Misses. J Med Chem. 2018;61(24):10976–10995. doi:10.1021/acs.jmedchem.8b00588
  • Guendisch U, Weiss J, Ecoeur F, et al. Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS One. 2017;12(11):e0188391. doi:10.1371/journal.pone.0188391
  • Gege C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: patent evaluation of WO2016061160 and US20160122345. Expert Opin Ther Pat. 2017;27(1):1–8. doi:10.1080/13543776.2017.1262350
  • Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. 2018;38(4):1031–1072.
  • David M, Gospodinov DK, Gheorghe N, et al. Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol. 2016;15:931–938.
  • Silverman MH, Strand V, Markovits D, et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol. 2008;35(1):41–48.172.
  • van Troostenburg AR, Clark EV, Carey WD, et al. Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF101, an A3 adenosine receptor agonist, in healthy young men. Int J Clin Pharmacol Ther. 2004;42(10):534–542.
  • Kundu-Raychaudhuri S, Chen YJ, Wulff H, Raychaudhuri SP. Kv1.3 in Psoriatic Disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis – xenograft model. J Autoimmun. 2014;55:63–72.
  • Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291–353.
  • Toussirot E. New treatment options and emerging drugs for axial spondyloarthritis: biological and targeted synthetic agents. Expert Opin Pharmacother. 2017;18:275–282.