320
Views
12
CrossRef citations to date
0
Altmetric
Review

Antiviral Effects of Oleandrin

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 503-515 | Published online: 16 Nov 2020

References

  • Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology. And novel therapeutic targets. Pharmacol Rev. 2009;61(1):9–38. doi:10.1124/pr.108.000711
  • Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs. 2007;7(3):173–189.
  • Kanwal N, Rasul A, Hussain G, et al. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem Toxicol.2020;143:111570. doi:10.1016/j.fct.2020.111570
  • Botelho AFM, Pierezan F, Soto-Blanco B, Melo MM. A review of cardiac glycosides: structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon. 2019;158:63–68.
  • Babula P, Masarik M, Adam V, Provaznik I, Kizek R. From Na+/K+-ATPase and cardiac glycosides to cytotoxicity and cancer treatment. Anticancer Agents Med Chem. 2013;13(7):1069–1087. doi:10.2174/18715206113139990304
  • Slingerland M, Corella C, Guchelaar HJ, Diederich M, Geiderblum H. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest New Drugs. 2013;31(4):1087–1094.
  • Van Kanegan MJ, He DN, Dunn DE, et al. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci. 2014;34(3):963–968. doi:10.1523/JNEUROSCI.2700-13.2014
  • Van Kanegan MJ, Dunn DE, Kaltenbach LS, et al. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke. Sci Rep. 2016;6:25626. doi:10.1038/srep25626
  • Gupta V, Mittal P. Phytochemical and pharmacological potential of Nerium oleander: A Review. International Journal of Pharmaceutical Sciences and Research. 2010;1(3):21–27.
  • Amarelle L, Leucona E. The antiviral effects of Na,K-ATPase inhibition: A Minireview. Int J Mol Sci. 2018;19(8):2154. doi:10.3390/ijms19082154
  • Dey P, Chaudhuri TK. Pharmacological aspects of Nerium indicum Mill: A comprehensive review. Pharmacogn Rev. 2014;8(16):156–162. doi:10.4103/0973-7847.134250
  • Kalita D, Saikia J. Ethnomedicinal, antibacterial and antifungal potentiality of Centella asiatica, Nerium indicum and Cuscuta reflexa - widely used in Tiwa tribe of Morigaon district of Assam, India. Int J Phytomed. 2012;4:380–385.
  • Farooqui S, Tyagi T. Nerium oleander: its application in basic and applied science: A review. Int J Pharm and Pharm Sci. 2018;10(3):1–4. doi:10.22159/ijpps.2018v10i3.22505
  • Hong DS, Henary H, Falchook GS, et al. First-in-human study of PBI-05204, an oleander-derived inhibitor of Akt, FGF-2, Nf-kB and p70s6k, in patients with solid tumors. Invest New Drugs. 2014;32(6):1204–1212. doi:10.1007/s10637-014-0127-0
  • Roth MT, Cardin DB, Borazanci EH, et al. A phase II single-arm open-label bayesian adaptive efficacy and safety study of PBI 05204 in patients with stage IV metastatic pancreatic adenocarcinoma. Oncologist. 2020. 25. doi:10.1634/theoncologist.2020-0440
  • Wong RW, Lingwood CA, Ostrowski MA, Cabral MA, Cochrane A. Cardiac glycosides/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK ½-ERK ½ signaling. Sci Rep. 2018;8(1):850. doi:10.1038/s41598-018-19298-x
  • Singh S, Shenoy S, Nehete PN, et al. Nerium oleander derived derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia. 2013;84:32–39. doi:10.1016/j.fitote.2012.10.017
  • James RM, Dorosky DE, Stonier SW, Newman RA, Dye JM Antiviral potency of an extract from Nerium oleander. 2017. 9th International Symposium on Filoviruses. Marburg, Germany. Poster presentation.
  • Hutchinson T, Yapindi L, Malu A, Newman RA, Sastry KJ, Harrod R. The botanical glycoside oleandrin inhibits human T-cell leukemia virus Type-1 infectivity and Env-dependent virological synapse formation. J Antivir and Antiretrovir. 2019;11(3):184.
  • Plante KS, Plante JA, Fernandez D, et al. Prophylactic and therapeutic inhibition of in vitro SARS-CoV-2 replication by oleandrin. bioRxiv. 2020.
  • Balzarini J. Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV. Lancet Infect Dis. 2005;5:726–731. doi:10.1016/S1473-3099(05)70271-1
  • Laird GM, Eisele EE, Rabi SA, Nikolaeva D, Siliciano RF. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identities the cardiac glycosides. J Antimicrob Chemother. 2014;69(4):988–994. doi:10.1093/jac/dkt471
  • Agostini S, Ali H, Vardabasso C, et al. Inhibition of non-canonical HIV-1 Tat secretion through the cellular Na+, K+-ATPase Blocks HIV-1 infection. E BIO Medicine. 2017;21:170–181.
  • Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol. 2019;208(2):131–169.
  • Ugolini S, Moulard M, Mondor I, et al. HIV-1 gp120 induces association between CD4 and the chemokine receptor CXCR4. J Immunol. 1994;159(6):3000–3008.
  • Cicala C, Nawaz F, Jelicic J, Arthros J, Fauci AS. HIV-1 gp120: A target for therapeutics and vaccine design. Curr Drug Targets. 2016;17(1):122–135. doi:10.2174/1389450116666150825120735
  • Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8):a006866. doi:10.1101/cshperspect.a006866
  • Afonso PV, Cassar O, Gessain A. Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes. Retrovirology. 2019;16(1):39. doi:10.1186/s12977-019-0504-z
  • Harrod R. Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors. Retrovirology. 2019;16(1):25. doi:10.1186/s12977-019-0487-9
  • Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:388. doi:10.3389/fmicb.2012.00388
  • Einsiedel LJ, Pham H, Woodman RJ, Pepperill C, Taylor KA. The prevalence and clinical associations of HTLV-1 infection in a remote Indigenous community. Med J Aust. 2016;205(7):305–309. doi:10.5694/mja16.00285
  • Blas MM, Alva IE, Garcia PJ, et al. High prevalence of human T-lymphotropic virus infection in indigenous women from the Peruvian Amazon. PLoS One;. 2013;8(9):e73978. doi:10.1371/journal.pone.0073978
  • Martin F, Tagoya Y, Gallo R. Time to eradicate HTLV-1: an open letter to WHO. Lancet. 2018;391:1893–1894. doi:10.1016/S0140-6736(18)30974-7
  • Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood. 2017;129(9):1071–1081. doi:10.1182/blood-2016-09-692574
  • Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol. 2015;14:93–100. doi:10.1016/j.coviro.2015.09.004
  • Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscett FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med. 2008;14(4):429–436. doi:10.1038/nm1745
  • de Castro-amarante MF, Pise-Masison CA, McKinnon K, et al. Human T-cell leukemia virus type 1 infection of the three monocyte subsets contributes to viral burden in humans. J Virol. 2015;90(5):2195–2207.
  • Cook LB, Fuji S, Hermine O, et al. Revised adult t-cell leukemia-lymphoma international consensus meeting report. J Clin Oncol. 2019;37(8):677–687. doi:10.1200/JCO.18.00501
  • Barmak K, Harhaj EW, Wigdahl B. Mediators of central nervous system damage during the progression of human T-cell leukemia type-I-associated myelopathy/tropical spastic paraparesis. J Neurovirol. 2003;9:522–529. doi:10.1080/13550280390218689
  • Cavrois M, Gessain A, Gout O, Wain-Hobson S, Wattel E. Common human T-cell leukemia virus type 1 (HTLV-1) integration sites in cerebrospinal fluid and blood lymphocytes of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis indicate that HTLV-1 crosses the blood-brain barrier via clonal HTLV-1-infected cells. J Infect Dis. 2000;182:1044–1050.
  • Yamano Y, Sato T. Clinical pathophysiology of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. Front Microbio. 2012;3:389. doi:10.3389/fmicb.2012.00389
  • Izumo S, Umehara F, Kashio N, Kubota R, Sato E, Osame M. Neuropathology of HTLV-1-associated myelopathy (HAM/TSP). Leukemia. 1997;11:82–84.
  • Levin MC, Lee SM, Kalume F, et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat Med. 2002;8:509–513. doi:10.1038/nm0502-509
  • Nagai M, Usuku K, Matsumoto W, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4:586–593. doi:10.3109/13550289809114225
  • Anderson MR, Pleet ML, Enose-Akahata Y, et al. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Transl Med. 2018;7(1):24. doi:10.1186/s40169-018-0204-7
  • Azodi S, Nai G, Enose-Akahata Y, et al. Imaging spinal cord atrophy in progressive myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis (MS). Ann Neurol. 2017;82(5):719–728. doi:10.1002/ana.25072
  • Taniguchi A, Mochizuki H, Yamashita A, Shiomi K, Asada Y, Nakazato M. Spinal cord anteroposterior atrophy in HAM/TSP: magnetic resonance imaging and neuropathological analyses. J Neurol Sci. 2017;381:135–140. doi:10.1016/j.jns.2017.08.3243
  • Mahé A, Chollet-Martin S, Gessain A. HTLV-I-associated infective dermatitis. Lancet. 1999;354(9187):1386. doi:10.1016/S0140-6736(05)76239-5
  • Yakova M, Lézin A, Dantin F, et al. Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease. Retrovirology. 2005;2:4. doi:10.1186/1742-4690-2-4
  • Pinheiro SR, Martins-Filho OA, Ribas JG, et al. Immunologic markers, uveitis, and keratoconjunctivitis sicca associated with human T-cell lymphotropic virus type. Am J Ophthalmol. 2006;142(1):811–815. doi:10.1016/j.ajo.2006.06.013
  • Lima CM, Santos S, Dourado A, et al. Association of sicca syndrome with proviral load and proinflammatory cytokines in HTLV-1 infection. J Immunol Res. 2016;8402059.
  • Hida A, Imaizumi M, Sera N, et al. Association of human T lymphotropic virus type 1 with Sjogren syndrome. Ann Rheum Dis. 2010;69:2056–2057. doi:10.1136/ard.2010.128736
  • Martin F, Taylor GP, Jacobson S. Inflammatory manifestations of HTLV-1 and their therapeutic options. Expert Rev Clin Immunol. 2014;10:1531–1546.
  • Igakura T, Stinchcombe JC, Goon PKC, et al. Spread of HTLV-I between lymph ocytes by virus-induced polarization of the cytoskeleton. Science. 2003;299:1713–1716. doi:10.1126/science.1080115
  • Pais-Correia AM, Sachse M, Guadagnini S, et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med. 2010;16:83–89. doi:10.1038/nm.2065
  • Majorovits E, Nejmeddine M, Tanaka Y, Taylor GP, Fuller SD, Bangham CRM. Human T-lymphotropic virus-1 visualized at the virological synapse by electron microscopy. PLoS One. 2008;3:e2251. doi:10.1371/journal.pone.0002251
  • Garofalo S, Grimaldi A, Chece G, et al. The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells. J Neurosci. 2017;37:3926–3939. doi:10.1523/JNEUROSCI.2296-16.2017
  • Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC. In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models. J Neurochem. 2011;119:805–814.
  • Millen S, Gross C, Donhauser N, et al. (COL4A1, COL4A2), a component of the viral biofilm, is induced by the HTLV-1 oncoprotein Tax and impacts virus transmission. Front Microbiol. 2019;10:2439. doi:10.3389/fmicb.2019.02439
  • Van Prooyen N, Gold H, Andresen V, et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci, USA. 2010;107:20738–20743.
  • Omsland M, Pise-Masison C, Fujikawa D, et al. Inhibition of tunneling nanotube (TNT) formation and human T-cell leukemia virus type-1 (HTLV-1) transmission by cytarabine. Sci Rep. 2018;8:11118. doi:10.1038/s41598-018-29391-w
  • Garcia-Dorival I, Wu W, Dowall S, et al. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J Proteome Res. 2014;13(11):120–135. doi:10.1021/pr500556d
  • Freedman BD, Harry RN. Calcium and filoviruses: a budding relationship. Future Microbiol. 2016;11:713–715. doi:10.2217/fmb-2016-0057
  • Kiyohara H, Ichino C, Kawamura Y, et al. In vitro anti-influenza virus activity of a cardiotonic glycoside from Adenium obesum (Forssk.). Phytomed. 2012;19(2):111–114. doi:10.1016/j.phymed.2011.07.004
  • Katzen AL, Shigemura M, Welch LC, et al. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol. 2019;316(6):L1094–L1106. doi:10.1152/ajplung.00173.2018
  • Mi S, Li Y, Yan J, Gao GF. Na(+)/K(+) ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci. 2010;53(9):1098–1105. doi:10.1007/s11427-010-4048-7
  • Mehndiratta MM, Mehndritta P, Pande R. Poliomyelitis: historical facts, epidemiology, and current challenges in eradication. Neurohospitalist. 2014;4(4):223–229. doi:10.1177/1941874414533352
  • Sanna G, Madeddu S, Serra A, et al. Anti-poliovirus activity of Nerium oleander aqueous extract. Nat Prod Res. 2019;1–4. doi:10.1080/14786419.2019.1582046
  • Burt FJ, Chen W, Miner JJ, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infectious Disease. 2017;17(4):e107–e117.
  • Ashbrook AW, Lentscher AJ, Zamora PF, et al. Antagonism of the sodium-potassium ATPase impairs Chikungunya virus infection. mBio. 2016;7(3):e00693–16.
  • Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660–694.
  • De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Anti Infect Ther. 2006;4(2):291–302. doi:10.1586/14787210.4.2.291
  • Totura AL, Bavari S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019;14(4):397–412. doi:10.1080/17460441.2019.1581171
  • Yang C-W, Chang H-Y, Hsu H-Y, et al. Identification of antiviral activity of the cardenolides, Na+/K+-ATPase inhibitors, against porcine transmissible gastroenteritis virus. Tox Appl Pharmacol. 2017;332:129–137. doi:10.1016/j.taap.2017.04.017
  • Rajbhandari M, Wegner U, Julich M, Schopke T, Mentel R. Screening of Nepalese medicinal plants for antiviral activity. J Ethnopharm. 2001;74:251–255. doi:10.1016/S0378-8741(00)00374-3
  • Dodson AW, Taylor TJ, Knipe DM, Coen DM. Inhibitors of sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology. 2007;366(2):340–348. doi:10.1016/j.virol.2007.05.001
  • Su CT, Hsu JT, Hsieh HP, et al. Anti-HSV activity of digitoxin and its possible mechanisms. Antiviral Res. 2008;79(1):62–70. doi:10.1016/j.antiviral.2008.01.156
  • Boff L, Schneider NFZ, Munkert J, et al. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol. 2020;165(6):1385–1396. doi:10.1007/s00705-020-04562-1
  • Kapoor A, Cai H, Forman M, He R, Shamay M, Arav-Boger R. Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the hERG gene. Antimicrobial Agents and Chemotherapy. 2012;5(9):4891–4899.
  • Cohen T, Williams JD, Opperman TJ, Sanchez R, Lurain NS, Tortorella D. Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J Virol. 2016;90(23):10715–10727. doi:10.1128/JVI.01050-16
  • Oberstein A, Shenk T. Cellular responses to human cytomegalovirus infection: induction of a mesenchymal-to-epithelial transition (MET) phenotype. Proc Nat Acad Sci USA. 2017;114(39):E8244–E8253. doi:10.1073/pnas.1710799114
  • Mukhopadhyay R, Venkatadri R, Katnelson J, Arav-Boger R. Digitoxin suppresses human cytomegalovirus replication via Na+, K+/ATPase α1 subunit-dependent AMP-activated protein kinase and autophagy activation. J Virol. 2018;92(6):e01861–17. doi:10.1128/JVI.01861-17
  • Pandit VR, Kadhiravan T, Prakash RKNJ. Cardiac arrhythmias, electrolyte abnormalities and serum cardiac concentrations in yellow oleander (Cascabela thevetia) poisoning – a prospective study. Clin Toxicol. 2019;57(2):104–111. doi:10.1080/15563650.2018.1499930
  • Kanjo S, MacLean RD. Cardiac glycoside toxicity: more than 200 years and counting. Crit Care Clin. 2012;28(4):527–535. doi:10.1016/j.ccc.2012.07.005
  • Langford SD, Boor PJ. Oleander toxicity: an examination of human and animal toxic exposures. Toxicology 1996. 1996;109(1):1–13.
  • Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann Nerol. 2020;88(1):1–11. doi:10.1002/ana.25807
  • Malpica L, Pimentel A, Reis IM, et al. Epidemiology, clinical features, and outcome of HTLV-1-related ATLL in an area of prevalence in the United States. Blood Adv. 2018;2(6):607–620. doi:10.1182/bloodadvances.2017011106
  • Johnson JM, Harrod R, Franchini G. Molecular biology and pathogenesis of the human T-cell leukaemia/lymphotropic virus type-1 (HTLV-1). Int J Exp Pathol. 2001;82(3):135–147. doi:10.1046/j.1365-2613.2001.00191.x
  • Cuadrado A, Pajares M, Benito C, et al. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci. 2020;41(9):598–610. doi:10.1016/j.tips.2020.07.003