300
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Effect of Inflammation on the Healing Process of Acute Skin Wounds Under the Treatment of Wounds with Injections in Rats

ORCID Icon, ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 409-422 | Published online: 30 Oct 2020

References

  • Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–3885. doi:10.1007/s00018-016-2268-0
  • Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. doi:10.1159/000339613
  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: an Update on the Current Knowledge and Concepts. Eur Surg Res. 2017;58(1–2):81–94. doi:10.1159/000454919
  • Cañedo-Dorantes L, Cañedo-Ayala C-AM. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflammation. 2019;2019:3706315. doi:10.1155/2019/3706315
  • Serra MB, Barroso WA, da Silva NND, et al. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflammation. 2017;2017:3406215. doi:10.1155/2017/3406215
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. doi:10.1126/scitranslmed.3009337
  • Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: positive Actions and Negative Reactions. Adv Wound Care. 2013;2(7):379–388. doi:10.1089/wound.2012.0383
  • Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015;15(11):692–704. doi:10.1038/nri3908
  • Dovi JV, Szpaderska AM, DiPietro LA. Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost. 2004;92(08):275–280. doi:10.1160/TH03-11-0720
  • Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58(2):165–171. doi:10.1016/j.phrs.2008.06.004.
  • Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–3977. doi:10.4049/jimmunol.0903356.
  • Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci. 2017;18(7):1545. doi:10.3390/ijms18071545
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23. doi:10.1017/S1462399411001943.
  • Strbo N, Yin N, Stojadinovic SO. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv Wound Care. 2014;3(7):492–501. doi:10.1089/wound.2012.0435
  • Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97(3):258–267. doi:10.1111/imcb.12236
  • Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci. 2018;19(10):3217. doi:10.3390/ijms19103217
  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019;99(1):665–706. doi:10.1152/physrev.00067.2017
  • Mustoe TA, O??Shaughnessy K, Kloeters O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg. 2006;117(SUPPLEMENT):35S–41S. doi:10.1097/01.prs.0000225431.63010.1b
  • Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci. 2016;17(12):2085. doi:10.3390/ijms17122085
  • Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care. 2015;4(3):119–136. doi:10.1089/wound.2013.0485
  • Karppinen S-M, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res. 2019;8:F1000 Faculty Rev–787. doi:10.12688/f1000research.18293.1
  • Ogawa OR. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. Int J Mol Sci. 2017;18(3):606. doi:10.3390/ijms18030606
  • Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–771. doi:10.1111/j.1524-475X.2009.00543.x
  • Su W-H, Wang C-J, Fu H-C, et al. Human Umbilical Cord Mesenchymal Stem Cells Extricate Bupivacaine-Impaired Skeletal Muscle Function via Mitigating Neutrophil-Mediated Acute Inflammation and Protecting against Fibrosis. Int J Mol Sci. 2019;20(17):4312. doi:10.3390/ijms20174312
  • Wang L-T, Ting C-H, Yen M-L, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci. 2016;23(1):76. doi:10.1186/s12929-016-0289-5
  • Li J, Li D, Liu X, Tang S, Wei F. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm. 2012;9(1):33. doi:10.1186/1476-9255-9-33
  • Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20. doi:10.1038/mt.2011.211
  • Lee YS, Sah SK, Lee JH, Seo KW, Kang KS, Kim TY. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem Biophys Rep. 2016;9:281–288. doi:10.1016/j.bbrep.2016.10.002
  • Guekht A, Skoog I, Edmundson S, Zakharov V, Korczyn AD. ARTEMIDA Trial (A Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A Randomized Controlled Trial to Assess the Efficacy of Actovegin in Poststroke Cognitive Impairment. Stroke. 2017;48(5):1262–1270. doi:10.1161/STROKEAHA.116.014321
  • Reichl F, Högg C, Liu F. Högg C., Liu F., et al. Actovegin® reduces PMA-induced inflammation on human cells. Eur J Appl Physiol. 2020;120(7):1671–1680. doi:10.1007/s00421-020-04398-2
  • Brock J, Golding D, Smith PM, Nokes L, Kwan A, Lee PYF. Update on the Role of Actovegin in Musculoskeletal Medicine: A Review of the Past 10 Years. Clin J Sport Med. 2020;30(1):83–90. doi:10.1097/JSM.0000000000000566
  • Firan FC, Romila A, Onose OG. Current Synthesis and Systematic Review of Main Effects of Calf Blood Deproteinized Medicine (Actovegin®) in Ischemic Stroke. Int J Mol Sci. 2020;21(9):3181. doi:10.3390/ijms21093181
  • Belikan P, Nauth L, Färber L-C, et al. Intramuscular Injection of Combined Calf Blood Compound (CFC) and Homeopathic Drug Tr14 Accelerates Muscle Regeneration In Vivo. Int J Mol Sci. 2020;21(6):2112. doi:10.3390/ijms21062112
  • Dibirov MD, Gadzhimuradov RU, Koreyba KA. Analysis of the clinical application of epidermal growth factor (“Heberprot-P”) and bioplastic material (“Collost”) in treatment of skin and soft tissues defects in patients with diabetic foot syndrome. Khirurgiia. 2016;3:59–63. doi:10.17116/hirurgia2016359-63.
  • Sirak SV, Shchetinin EV, Sletov AA. Subantral augmentation with porous titanium in experiment and clinic. Stomatologiia. 2016;95(1):55–58. doi:10.17116/stomat201695155-58
  • Silina EV, Stupin VA, Zolotareva LS, Komarov AN. Native collagen application in clinical practice for chronic wounds treatment. Khirurgiia. 2017;9:78–84. doi:10.17116/hirurgia2017978-84.
  • Stupin VA, Silina EV, Gorskij VA, et al. Efficacy and safety of collagen biomaterial local application in complex treatment of the diabetic foot syndrome (final results of the multicenter randomised study). Khirurgiia. 2018;6:1–100. doi:10.17116/hirurgia2018691-100
  • Manturova NE, Stenko AG, Petinati YA, Chaikovskaya EA, Bolgarina AA. Injectable collagen in correction of age-related skin changes: experimental and clinical parallels. Bulletin Russian State Med Univ. 2019;8(1):71–77. doi:10.24075/BRSMU.2019.010
  • Budkevich LI, Mirzoyan GV, Gabitov RB, Brazol MA, Salistyj PV. Collost bioplastic collagen material for the treatment of burns. Sovremennye Tehn Med. 2020;12(1):92–96. doi:10.17691/stm2020.12.1.12