488
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Potential Antiaging Effects of DLBS1649, a Centella asiatica Bioactive Extract

ORCID Icon, , & ORCID Icon
Pages 781-795 | Published online: 11 Aug 2021

References

  • Argyropoulou A, Aligiannis N, Trougakos IP, et al. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30:1412–1437. doi:10.1039/c3np70031c
  • Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates aging. Nature. 2003;421(6923):643–648. doi:10.1038/nature01385
  • Ideker T, Thorsson V, Ranish JA, et al. Integrated genomic and proteomic analysis of a systematically perturbed metabolic network. Science. 2001;292(5518):929–934. doi:10.1126/science.292.5518.929
  • Sniderman AD, Furberg CD. Age as a modifiable risk factor for cardiovascular disease. Lancet. 2008;371(9623):1547–1549. doi:10.1016/S0140-6736(08)60313-X
  • Shen CY, Jiang JG, Li Yang L, et al. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017;174(11):1395–1425. doi:10.1111/bph.13631
  • Muraki K, Nyhan K, Han L. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol. 2012;135(2):13.
  • Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature. 2007;448(7155):767–774. doi:10.1038/nature05985
  • Chan S, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B-Biol Sci. 2004;359(1441):109–121. doi:10.1098/rstb.2003.1370
  • Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106(6):661–673. doi:10.1016/S0092-8674(01)00492-5
  • Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol. 2007;8(9):692–702. doi:10.1038/nrm2238
  • Westphal CH, Dipp MA, Guarente L. A therapeutic role for sirtuins in diseases of aging? Trends Biochem Sci. 2007;32(12):555–560. doi:10.1016/j.tibs.2007.09.008
  • Tjandrawinata RR, Arifin PF, Tandrasasmita OM, Rahmi D, Aripin A. DLBS1425, a Phaleria macrocarpa (Scheff.) Boerl. extract confers anti proliferative and proapoptotic effects via eicosanoid pathway. J Exp Ther Oncol. 2010;8(3):187–201.
  • Tjandrawinata RR, Nofiarny D, Susanto LW, Hendri P, Clarissa A. Symptomatic treatment of premenstrual syndrome and/or primary dysmenorrhea with DLBS1442, a bioactive extract of Phaleria macrocarpa. Int J Gen Med. 2011;4:465.
  • Tjandrawinata RR, Suastika K, Nofiarny D. DLBS3233 extract, a novel insulin sensitizer with negligible risk of hypoglycemia: a phase-I study. Int J Diabetes Metab. 2012;21:13–20. doi:10.1159/000497721
  • Tjandrawinata RR, Nailufar F, Arifin PF. Hydrogen potassium adenosine triphosphatase activity inhibition and downregulation of its expression by bioactive fraction DLBS2411 from Cinnamomum burmannii in gastric parietal cells. Int J Gen Ed. 2013;6:807. doi:10.2147/IJGM.S50134
  • Karsono AH, Tandrasasmita OM, Tjandrawinata RR. Bioactive fraction from Lagerstroemia speciosa leaves (DLBS3733) reduces fat droplet by inhibiting adipogenesis and lipogenesis. J Exp Pharmacol. 2019;11:39. doi:10.2147/JEP.S181642
  • Tolkah NM. Genetic variation of Centella asiatica based on randomly amplified polymorphic DNA. Ethnobot J. 1999;22:7–13.
  • Brinkhaus B, Lindner M, Schuppan D, et al. Chemical, pharmacological, and clinical profile of the East Asian medicinal plant. Centella Asiatica Phytomedicine. 2000;7(5):427–448. doi:10.1016/S0944-7113(00)80065-3
  • James JT, Dubery IA. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules. 2009;14(10):3922–3941. doi:10.3390/molecules14103922
  • Tenni R, Zanaboni G, De Agustini MP, et al. Effect of the triterpenoids fraction of Centella asiatica on macromolecules of the connective matrix in human skin fibroblast cultures. Ital J Biochem. 1988;37(2):69–77.
  • Bonte F, Dumas M, Chaudagne C, et al. Influence of asiatic acid, madecassic acid and asiaticoside on human collagen I synthesis. Planta Med. 1994;60(2):133–135. doi:10.1055/s-2006-959434
  • Maquart FX, Chasting F, Simeon A, et al. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol. 1999;9(4):289–296.
  • Kim WJ, Kim JD, Veriansyah B, Kim J, Oh SG, Tjandrawinata RR. Extraction of Asiaticoside from Centella asiatica: effects of solvents and extraction methods. Biochemistry. 2004;23:339–344.
  • Gupta YK, Kumar MHV, Srivastava AK. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition, and oxidative stress in rats. Pharmacol Biochem Behav. 2003;74(3):579–585. doi:10.1016/S0091-3057(02)01044-4
  • Rao SB, Chetana M, Uma DP. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol Behav. 2005;86(4):449–457. doi:10.1016/j.physbeh.2005.07.019
  • Chen Y, Han T, Rui Y, et al. Effects of total triterpenes of Centella asiatica on the Depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai. 2003;26(12):870–873.
  • Fitrawan LO, Ariastuti R, Tjandrawinata RR, Nugroho AE, Pramono S. Antidiabetic effect of combination of fractionated-extracts of Andrographis paniculata and Centella asiatica: in vitro study. Asian Pac J of Trop Biomed. 2018;8(11):527. doi:10.4103/2221-1691.245957
  • Parvathi D, Amritha A, Paul SFD. Wonder animal model for genetic studies–Drosophila melanogaster–its life cycle and breeding methods–a review. Sri Ramanchandra J Med. 2009;2:33–38.
  • Panchal K, Tiwari AK. Drosophila melanogaster “a potential model organism” for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother. 2017;89:1331–1345.
  • Jafari M. Drosophila melanogaster as a model system for the evaluation of anti-aging compounds. Fly. 2010;4(3):253–257. doi:10.4161/fly.4.3.11997
  • Walter MF, Biessmann MR, Benitez C, Török T, Mason JM, Biessmann H. Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility. Chromosoma. 2007;116(1):41–51. doi:10.1007/s00412-006-0081-5
  • Capkova FR, Biessmann H, Mason JM. Regulation of telomere length in Drosophila. Cytogenet Genome Res. 2008;122(3–4):356–364. doi:10.1159/000167823
  • George JA, DeBaryshe PG, Traverse KL, Celniker SE, Pardue ML. Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res. 2006;16(10):1231–1240. doi:10.1101/gr.5348806
  • Kim JH, Hwang KH, Park KS, et al. Biological role of anti-aging protein klotho. J Lifestyle Med. 2015;5(1):1–6. doi:10.15280/jlm.2015.5.1.1
  • Morrison S, McGee SL. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte. 2015;4(4):295–302. doi:10.1080/21623945.2015.1040612
  • O’Callaghan N, Dhillon V, Thomas P, Fenech M. A quantitative real-time PCR method for absolute telomere length. Biotechniques. 2008;44(6):807–809. doi:10.2144/000112761
  • Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47. doi:10.1093/nar/30.10.e47
  • Zou YX, Ruan MH, Luan J. Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster. J Nutr Health Aging. 2017;21(3):314–319. doi:10.1007/s12603-016-0752-8
  • Altman DG. Practical Statistics for Medical Research. Chapman and Hall; 1991.
  • Uno H, Claggett B, Tian L. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J Clin Oncol. 2014;32(22):2380–2385. doi:10.1200/JCO.2014.55.2208
  • Meeran MFN, Goyal SN, Suchal K, et al. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: a pentacyclic triterpenoid of therapeutic promise. Front Pharmacol. 2018;4(9):892.
  • Kamble SM, Patel HM, Goyal SN, et al. In-silico evidence for binding of pentacyclic triterpenoids to Keap1-Nrf2 protein-protein binding site. Comb Chem High Throughput Screen. 2017;20(3):215–234. doi:10.2174/1386207319666161214111822
  • Kamble SM, Goyal SN, Patil CR. Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: a review. RSC Adv. 2014;4:33370–33382. doi:10.1039/C4RA02784A
  • Lokanathan Y, Omar N, Puzi NNA, et al. Recent updates in neuroprotective and neuroregenerative potential of Centella asiatica. Malays J Med Sci. 2016;23(1):4–14.
  • Soumyanath A, Zhong YP, Gold SA, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in vitro. J Pharm Pharmacol. 2005;57(9):1221–1229. doi:10.1211/jpp.57.9.0018
  • Tiwari S, Singh S, Patwardhan K, et al. Effect of Centella asiatica on mild cognitive impairment (MCI) and other common age-related clinical problems. Dig J Nanomater Biostruct. 2008;3(4):215–220.
  • Bylka W, Znajdek-wiżeń P, Studzińska-Sroka E, et al. Centella asiatica in cosmetology. Postep Derm Alergol. 2013;1:46–49.
  • James J, Dubery I. Identification and quantification of triterpenoid Centelloids in Centella asiatica (L.) urban by densitometric TLC. J Planar Chromatogr. 2011;24:82–87. doi:10.1556/JPC.24.2011.1.16
  • Guo L, Wei XD, Ou Q, et al. Effect of astragaloside on the expression of telomerase activity and klotho gene in aged HELF cells. Chin J Gerontol. 2010;13:1819–1822.
  • Salvador L, Singaravelu G, Calvin B, et al. A natural product telomerase activator lengthens telomeres in humans: a randomized, double-blind, and placebo-controlled study. Rejuvenation Res. 2016;19(6):478–484. doi:10.1089/rej.2015.1793
  • Guruprasad KP, Dash S, Marigowda B, et al. Influence of Amalaki Rasayana on telomerase activity and telomere length in human blood mononuclear cells. J Ayurveda Integr Med. 2017;8(2):105–112. doi:10.1016/j.jaim.2017.01.007
  • Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999;21(2):220–224. doi:10.1038/6010
  • Shay JW. Role of telomeres and telomerase in aging and cancer. Discov. 2016;6(6):584–593.
  • Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, et al. Longevity pathways (mTOR, SIRT, Insulin/IGF-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem. 2015;15(21):2116–2138. doi:10.2174/1568026615666150610125715
  • Oliveira RM, Sarkander J, Kazantsev AG, et al. SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol. 2012;3(82):1–9. doi:10.3389/fphar.2012.00082
  • Xu MF, Xiong YY, Liu JK, et al. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012;33(5):578–587. doi:10.1038/aps.2012.3
  • Qian Y, Xin Z, Lv Y, et al. Asiatic acid suppresses neuroinflammation in BV2 microglia via modulation of the Sirt1/NF-κB signaling pathway. Food Funct. 2018;9(2):1048–1057. doi:10.1039/C7FO01442B
  • Han YY, Shen P, Hao J, et al. Ganoderma lucidum polysaccharides improve renal aging through upregulating SIRT1 expression. Int J Clin Exp Med. 2018;11(7):6816–6823.
  • Sung B, Chung JW, Bae HR, et al. Humulus japonicus extract exhibits anti-oxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway. Exp and Ther Med. 2015;9(5):1819–1826. doi:10.3892/etm.2015.2302
  • Kou X, Liu X, Chen X, et al. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. Oncotarget. 2016;7(46):74484–74495. doi:10.18632/oncotarget.12811
  • Viswanathan M, Kim SK, Berdichevsky A, et al. A role for SIR-2.1 regulation of ER stress response genes in determining Celegans life span. Dev Cell. 2005;9(5):605–615. doi:10.1016/j.devcel.2005.09.017
  • Zhou X, Yang Q, Xie Y, et al. Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol Aging. 2015;36(3):1462–1470. doi:10.1016/j.neurobiolaging.2014.11.002
  • Liang Y, Liu C, Lu M, et al. Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Sci Rep. 2018;8(1):5779. doi:10.1038/s41598-018-24146-z
  • Al-Regaiey KA. The effects of calorie restriction on aging: a brief review. Eur Rev Med Pharmacol Sci. 2016;20(11):2468–2473.
  • López-Lluch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol. 2016;594(8):2043–2060. doi:10.1113/JP270543
  • Blagosklonny MV. Koschei the immortal and anti-aging drugs. Cell Death Dis. 2014;5(12):e1552. doi:10.1038/cddis.2014.520
  • Chang GR, Chiu YS, Wu YY, et al. Rapamycin protects against high-fat diet-induced obesity in C57BL/6J mice. J Pharmacol Sci. 2009;109(4):496–503. doi:10.1254/jphs.08215FP
  • Chang GR, Wu YY, Chiu YS, et al. Long-term administration of rapamycin reduces adiposity but impairs glucose tolerance in high-fat diet-fed KK/HlJ mice. Basic Clin Pharmacol Toxicol. 2009;105(3):188–198. doi:10.1111/j.1742-7843.2009.00427.x
  • Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53± mice. Aging. 2012;4(10):709–714. doi:10.18632/aging.100498
  • Miller RA, Harrison DE, Astle CM, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol a Biol Sci Med Sci. 2011;66(2):191–201. doi:10.1093/gerona/glq178
  • Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–395. doi:10.1038/nature08221
  • Miller KN, Burhans MS, Clark JP, et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell. 2017;16(3):497–507. doi:10.1111/acel.12575
  • Kim JY, Kim DH, Choi J, et al. Changes in lipid distribution during aging and its modulation by calorie restriction. Age. 2009;12:127–142. doi:10.1007/s11357-009-9089-0
  • Xu C, Cai Y, Fan P, et al. Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissue. Diabetes. 2015;64(5):1576–1590. doi:10.2337/db14-1180