297
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Immune-Based Combination Therapies for Advanced Hepatocellular Carcinoma

, ORCID Icon, , , , , , , & show all
Pages 1445-1463 | Received 22 Feb 2023, Accepted 29 Aug 2023, Published online: 06 Sep 2023

References

  • World Health Organization. Cancer today; 2022. Available from: http://gco.iarc.fr/today/home. Accessed August 29, 2023.
  • McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl 1):4–13. doi:10.1002/hep.31288
  • Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748–755.e3. doi:10.1016/j.cgh.2018.05.057
  • She WH, Chok KS. Strategies to increase the resectability of hepatocellular carcinoma. World J Hepatol. 2015;7(18):2147–2154. doi:10.4254/wjh.v7.i18.2147
  • Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised Phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. doi:10.1016/S0140-6736(18)30207-1
  • Rizzo A, Nannini M, Novelli M, Dalia Ricci A, Scioscio VD, Pantaleo MA. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920936932. doi:10.1177/1758835920936932
  • Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63. doi:10.1056/NEJMoa1717002
  • Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–296. doi:10.1016/S1470-2045(18)30937-9
  • Yau T, Park JW, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77–90. doi:10.1016/S1470-2045(21)00604-5
  • Abou-Alfa GK, Lau G, Kudo M, et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence. 2022;1(8):EVIDoa2100070. doi:10.1056/EVIDoa2100070
  • Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38(3):193–202. doi:10.1200/JCO.19.01307
  • Rs F, Q S, I M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:20.
  • C B, Y Q, W W. Intimate communications within the tumor microenvironment: stromal factors function as an orchestra. J Biomed Sci. 2023;30:1.
  • Xie Q, Zhang P, Wang Y, Mei W, Zeng C. Overcoming resistance to immune checkpoint inhibitors in hepatocellular carcinoma: challenges and opportunities. Front Oncol. 2022;12:958720. doi:10.3389/fonc.2022.958720
  • Rizzo A, Ricci AD, Di Federico A, et al. Predictive biomarkers for checkpoint inhibitor-based immunotherapy in hepatocellular carcinoma: where do we stand? Front Oncol. 2021;11:803133. doi:10.3389/fonc.2021.803133
  • Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212(2):139–148. doi:10.1084/jem.20140559
  • Ntellas P, Mavroeidis L, Gkoura S, et al. Old player-new tricks: non angiogenic effects of the VEGF/VEGFR pathway in cancer. Cancers. 2020;12(11):3145. doi:10.3390/cancers12113145
  • Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. doi:10.1186/s12943-018-0928-4
  • Sagmeister P, Daza J, Ofner A, et al. Comparative response of HCC Cells to TKIs: modified in vitro testing and descriptive expression analysis. J Hepatocell Carcinoma. 2022;9:595–607. doi:10.2147/JHC.S356333
  • Finn RS, Qin S, Ikeda M, et al. IMbrave150: updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2023;39:267. doi:10.1200/JCO.2021.39.3_suppl.267
  • Xu J, Shen J, Gu S, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label, phase II trial. Clin Cancer Res. 2021;27(4):1003–1011. doi:10.1158/1078-0432.CCR-20-2571
  • Kelley RK, Rimassa L, Cheng AL, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23(8):995–1008. doi:10.1016/S1470-2045(22)00326-6
  • Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, Phase 2-3 study. Lancet Oncol. 2021;22(7):977–990. doi:10.1016/S1470-2045(21)00252-7
  • Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–1982. doi:10.1200/JCO.2014.59.4358
  • Brahmer JR, Lee JS, Ciuleanu TE, et al. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small cell lung cancer in checkMate 227. J Clin Oncol. 2022;2022:101200J.
  • Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–1290. doi:10.1056/NEJMoa1712126
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New England J Med. 2019;381(16):1535–1546. doi:10.1056/NEJMoa1910836
  • Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the checkmate 040 randomized clinical trial. PubMed. 2022;6(11):e204564.
  • El-Khoueiry AB, Yau T, Kang YK, et al. Nivolumab (NIVO) plus ipilimumab (IPI) combination therapy in patients (Pts) with advanced hepatocellular carcinoma (aHCC): long-term results from CheckMate 040. JCO. 2021;39(3_suppl):269. doi:10.1200/JCO.2021.39.3_suppl.269
  • Sangro B, Yau T, El-Khoueiry AB, et al. Exposure-response analysis for nivolumab + ipilimumab combination therapy in patients with advanced hepatocellular carcinoma (CheckMate 040). Clin Transl Sci. 2023;2023:1.
  • Squibb B-M. A randomized, multi-center, phase 3 study of nivolumab in combination with ipilimumab compared to sorafenib or lenvatinib as first-line treatment in participants with advanced hepatocellular carcinoma. Clin Trial Regist. 2022;2022:1.
  • Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13(8):473–486. doi:10.1038/nrclinonc.2016.58
  • Fan J, Qin S, Sun HC. An open-label, multi-center phase iiib study of durvalumab and tremelimumab as first-line treatment in patients with unresectable hepatocellular carcinoma. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05557838. Accessed August 29, 2023.
  • Kelley RK, Sangro B, Harris W, et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J Clin Oncol. 2021;39(27):2991–3001. doi:10.1200/JCO.20.03555
  • Haber PK, Puigvehí M, Castet F, et al. Evidence-based management of hepatocellular carcinoma: systematic review and meta-analysis of randomized controlled trials (2002–2020). Gastroenterology. 2021;161(3):879–898. doi:10.1053/j.gastro.2021.06.008
  • Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592(7854):450–456. doi:10.1038/s41586-021-03362-0
  • Rimini M, Rimassa L, Ueshima K, et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022;7(6):100591.
  • Zhou J, Shi YH, Liu B, et al. A phase Ib, multicenter, open-label study to assess the safety, tolerability, and preliminary efficacy of sintilimab plus IBI310 (anti-CTLA4 mAb) in patients with advanced hepatocellular carcinoma. JCO. 2022;40(4_suppl):421. doi:10.1200/JCO.2022.40.4_suppl.421
  • Innovent Biologics (Suzhou) Co. Ltd. A randomized, open-label, controlled, multicenter phase III clinical study to compare the effectiveness and safety of ibi310 combined with sintilimab versus sorafenib in the first-line treatment of advanced hepatocellular carcinoma. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04720716. Accessed August 29, 2023.
  • Zimmer L, Apuri S, Eroglu Z, et al. Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma. Eur J Cancer. 2017;75:47–55. doi:10.1016/j.ejca.2017.01.009
  • Viscardi G, Tralongo AC, Massari F, et al. Comparative assessment of early mortality risk upon immune checkpoint inhibitors alone or in combination with other agents across solid malignancies: a systematic review and meta-analysis. Eur J Cancer. 2022;177:175–185. doi:10.1016/j.ejca.2022.09.031
  • Mollica V, Santoni M, Matrana MR, et al. Concomitant proton pump inhibitors and outcome of patients treated with nivolumab alone or plus ipilimumab for advanced renal cell carcinoma. Target Oncol. 2022;17(1):61–68. doi:10.1007/s11523-021-00861-y
  • Wong JSL, Kwok GGW, Tang V, et al. Ipilimumab and nivolumab/pembrolizumab in advanced hepatocellular carcinoma refractory to prior immune checkpoint inhibitors. J Immunother Cancer. 2021;9(2):e001945. doi:10.1136/jitc-2020-001945
  • Academic and Community Cancer Research United. A phase II study of nivolumab + ipilimumab in advanced HCC patients who have progressed on first line atezolizumab + bevacizumab. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05199285. Accessed August 29, 2023.
  • Duan X, Liu J, Cui J, et al. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep. 2019;20(4):3773–3781. doi:10.3892/mmr.2019.10641
  • Guo M, Yuan F, Qi F, et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med. 2020;18(1):306. doi:10.1186/s12967-020-02469-8
  • Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56(4):1342–1351. doi:10.1002/hep.25777
  • Stecher C, Battin C, Leitner J, et al. PD-1 blockade promotes emerging checkpoint inhibitors in enhancing T cell responses to allogeneic dendritic cells. Front Immunol. 8;2017.
  • Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 2017;6(1):e1261779. doi:10.1080/2162402X.2016.1261779
  • Chiu DKC, Yuen VWH, Cheu JWS, et al. Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology. 2020;159(2):609–623. doi:10.1053/j.gastro.2020.03.074
  • Yan W, Liu X, Ma H, et al. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64(10):1593–1604. doi:10.1136/gutjnl-2014-307671
  • Zhou G, Sprengers D, Boor PPC, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology. 2017;153(4):1107–1119.e10. doi:10.1053/j.gastro.2017.06.017
  • Tesaro, Inc. A Phase 1 dose escalation and cohort expansion study of TSR-022, an Anti-TIM-3 monoclonal antibody, in patients with advanced solid tumors (AMBER). clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT02817633. Accessed August 29, 2023.
  • University of Hawaii. Phase II Study of TSR-022 (Cobolimab) in Combination With TSR-042 (Dostarlimab) for the treatment of advanced hepatocellular carcinoma. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT03680508. Accessed August 29, 2023.
  • Hoffmann-La Roche. An open label, multicenter, dose escalation and expansion, phase 1 study to evaluate safety, pharmacokinetics, and preliminary anti-tumor activity of RO7121661, a PD-1/TIM-3 bispecific antibody, in patients with advanced and/or metastatic solid tumors. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT03708328. Accessed August 29, 2023.
  • Aghayev T, Mazitova AM, Fang JR, et al. IL27 signaling serves as an immunologic checkpoint for innate cytotoxic cells to promote hepatocellular carcinoma. Cancer Discov. 2022;12(8):1960–1983. doi:10.1158/2159-8290.CD-20-1628
  • Naing A, Mantia C, Morgensztern D, et al. First-in-human study of SRF388, a first-in-class IL-27 targeting antibody, as monotherapy and in combination with pembrolizumab in patients with advanced solid tumors. JCO. 2022;40(16_suppl):2501. doi:10.1200/JCO.2022.40.16_suppl.2501
  • Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. doi:10.1056/NEJMoa2109970
  • Paik J. Nivolumab plus relatlimab: first approval. Drugs. 2022;82(8):925–931. doi:10.1007/s40265-022-01723-1
  • Bristol-Myers Squibb. A phase 2, randomized, open-label study of relatlimab in combination with nivolumab in participants with advanced hepatocellular carcinoma who are naive to IO therapy but progressed on tyrosine kinase inhibitors (RELATIVITY-073). clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04567615. Accessed August 29, 2023.
  • Yau T, Zagonel V, Santoro A, et al. Nivolumab (NIVO) + ipilimumab (IPI) + cabozantinib (CABO) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. JCO. 2020;38(4_suppl):478. doi:10.1200/JCO.2020.38.4_suppl.478
  • Akalu YT, Rothlin CV, Ghosh S. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev. 2017;276(1):165–177. doi:10.1111/imr.12522
  • Glodde N, Bald T, Van den boorn-konijnenberg D, et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity. 2017;47(4):789–802.e9. doi:10.1016/j.immuni.2017.09.012
  • Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543(7647):728–732. doi:10.1038/nature21676
  • Saeed A. A phase I/II trial of cabozantinib in combination with durvalumab (MEDI4736) with or without tremelimumab in patients with advanced gastroesophageal cancer and other gastrointestinal (GI) malignancies (CAMILLA). clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT03539822. Accessed August 29, 2023.
  • Dayyani F. Phase 2 study of cabozantinib combined with ipilimumab/nivolumab and transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) who are not candidates for curative intent treatment. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04472767. Accessed August 29, 2023.
  • Kato Y, Tabata K, Kimura T, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 2019;14(2):e0212513. doi:10.1371/journal.pone.0212513
  • Yi C, Chen L, Lin Z, et al. Lenvatinib Targets FGF Receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC. Hepatology. 2021;74(5):2544–2560. doi:10.1002/hep.31921
  • McCoon P, Lee YS, Kelley RK, et al. T-cell receptor pharmacodynamics associated with survival and response to tremelimumab (T) in combination with durvalumab (D) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). JCO. 2021;39(15_suppl):4087. doi:10.1200/JCO.2021.39.15_suppl.4087
  • Kelley RK, Sangro B, Harris WP, et al. Efficacy, tolerability, and biologic activity of a novel regimen of tremelimumab (T) in combination with durvalumab (D) for patients (pts) with advanced hepatocellular carcinoma (aHCC). JCO. 2020;38(15_suppl):4508.
  • AstraZeneca. A Phase III, randomized, open-label, sponsor-blinded, multicenter study of durvalumab in combination with tremelimumab ± lenvatinib given concurrently with TACE Compared to TACE alone in patients with locoregional hepatocellular carcinoma (EMERALD-3). clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05301842. Accessed August 29, 2023.
  • Perets R, Bar J, Rasco DW, et al. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer. Annal Oncol. 2021;32(3):395–403. doi:10.1016/j.annonc.2020.11.020
  • Motz GT, Santoro SP, Wang LP, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–615. doi:10.1038/nm.3541
  • Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2(7):632–642. doi:10.1158/2326-6066.CIR-14-0053
  • Shen J, Yang D, Ding Y. Advances in promoting the efficacy of chimeric antigen receptor T cells in the treatment of hepatocellular carcinoma. Cancers. 2022;14(20):5018. doi:10.3390/cancers14205018
  • Sun B, Yang D, Dai H, et al. Eradication of hepatocellular carcinoma by NKG2D-Based CAR-T Cells. Cancer Immunol Res. 2019;7(11):1813–1823. doi:10.1158/2326-6066.CIR-19-0026
  • Zhang RY, Wei D, Liu ZK, et al. Doxycycline inducible chimeric antigen receptor T cells targeting CD147 for hepatocellular carcinoma therapy. Front Cell Dev Biol. 2019;7:233. doi:10.3389/fcell.2019.00233
  • Dargel C, Bassani-Sternberg M, Hasreiter J, et al. T cells engineered to express a T-cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology. 2015;149(4):1042–1052. doi:10.1053/j.gastro.2015.05.055
  • Li D, Li N, Zhang YF, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology. 2020;158(8):2250–2265.e20. doi:10.1053/j.gastro.2020.02.011
  • Jiang Z, Jiang X, Chen S, et al. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol. 2016;7:690. doi:10.3389/fimmu.2016.00690
  • Pan Z, Di S, Shi B, et al. Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1-CH3 fusion protein. Cancer Immunol Immunother. 2018;67(10):1621–1634. doi:10.1007/s00262-018-2221-1
  • Mizukoshi E, Nakagawa H, Kitahara M, et al. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. Cancer Lett. 2015;369(1):242–249. doi:10.1016/j.canlet.2015.08.020
  • Sawada Y, Yoshikawa T, Nobuoka D, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686–3696. doi:10.1158/1078-0432.CCR-11-3044
  • Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med. 2014;12:86. doi:10.1186/1479-5876-12-86
  • Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18(8):525–543. doi:10.1038/s41575-021-00438-0
  • Liao JY, Zhang S. Safety and efficacy of personalized cancer vaccines in combination with immune checkpoint inhibitors in cancer treatment. Front Oncol. 2021;11. doi:10.3389/fonc.2021.663264
  • Fu J, Malm IJ, Kadayakkara DK, Levitsky H, Pardoll D, Kim YJ. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res. 2014;74(15):4042–4052. doi:10.1158/0008-5472.CAN-13-2685
  • Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science. 2017;355(6332):1428–1433. doi:10.1126/science.aaf1292
  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226. doi:10.1038/nature23003
  • Silva L, Egea J, Villanueva L, et al. Cold-Inducible RNA binding protein as a vaccination platform to enhance immunotherapeutic responses against hepatocellular carcinoma. Cancers. 2020;12(11):3397. doi:10.3390/cancers12113397
  • Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–221. doi:10.1038/nature22991
  • Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169(7):1342–1356.e16. PMID: 28622514. doi:10.1016/j.cell.2017.05.035
  • Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179(4):829–845.e20. PMID: 31675496. doi:10.1016/j.cell.2019.10.003
  • Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404–421.e16. PMID: 33357445. doi:10.1016/j.cell.2020.11.041
  • Dong LQ, Peng LH, Ma LJ, et al. Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma. J Hepatol. 2020;72(5):896–908. PMID: 31887370. doi:10.1016/j.jhep.2019.12.014
  • Kang HJ, Oh JH, Chun SM, et al. Immunogenomic landscape of hepatocellular carcinoma with immune cell stroma and EBV-positive tumor-infiltrating lymphocytes. J Hepatol. 2019;71(1):91–103. PMID: 30930222. doi:10.1016/j.jhep.2019.03.018
  • Shirabe K, Motomura T, Muto J, et al. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol. 2010;15(6):552–558. PMID: 20963618. doi:10.1007/s10147-010-0131-0
  • Sachdeva M, Chawla YK, Arora SK. Immunology of hepatocellular carcinoma. World J Hepatol. 2015;7(17):2080–2090. PMID: 26301050; PMCID: PMC4539401. doi:10.4254/wjh.v7.i17.2080
  • Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol. 2022;36:3946320221078476. PMID: 35226515; PMCID: PMC8891922. doi:10.1177/03946320221078476
  • Romualdo GR, Leroy K, Costa CJS, et al. In vivo and in vitro models of hepatocellular carcinoma: current strategies for translational modeling. Cancers. 2021;13(21):5583. PMID: 34771745; PMCID: PMC8582701. doi:10.3390/cancers13215583
  • de Galarreta M R, Bresnahan E, Molina-Sánchez P, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9(8):1124–1141. doi:10.1158/2159-8290.CD-19-0074
  • Oura K, Morishita A, Tani J, Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci. 2021;22(11):5801. PMID: 34071550; PMCID: PMC8198390. doi:10.3390/ijms22115801
  • Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: basic concepts and therapeutic implications. J Hepatol. 2020;72(1):167–182. PMID: 31449859. doi:10.1016/j.jhep.2019.08.014
  • Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):396. PMID: 31500650; PMCID: PMC6734524. doi:10.1186/s13046-019-1396-4
  • Xiang S, Li J, Shen J, et al. Identification of prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Front Immunol. 2021;12:653836. PMID: 33897701; PMCID: PMC8059369. doi:10.3389/fimmu.2021.653836
  • Ng HH, Lee RY, Goh S, et al. Immunohistochemical scoring of CD38 in the tumor microenvironment predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma. J Immunother Cancer. 2020;8(2):e000987. PMID: 32847986; PMCID: PMC7451957. doi:10.1136/jitc-2020-000987
  • Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol. 2017;12:153–186. PMID: 27959632; PMCID: PMC5720358. doi:10.1146/annurev-pathol-052016-100322
  • Zhu AX, Abbas AR, de Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med. 2022;28(8):1599–1611. doi:10.1038/s41591-022-01868-2
  • Sangro B, Melero I, Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73(6):1460–1469. doi:10.1016/j.jhep.2020.07.026
  • Stefanini B, Bucci L, Santi V, et al. Potential feasibility of atezolizumab-bevacizumab therapy in patients with hepatocellular carcinoma treated with tyrosine-kinase inhibitors. Dig Liver Dis. 2022;54(11):1563–1572. doi:10.1016/j.dld.2022.07.003
  • D’Alessio A, Fulgenzi CAM, Nishida N, et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: a real-world study. Hepatology. 2022;76(4):1000–1012. doi:10.1002/hep.32468
  • Kudo M, Matilla A, Santoro A, et al. CheckMate 040 cohort 5: a phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J Hepatol. 2021;75(3).
  • Kambhampati S, Bauer KE, Bracci PM, et al. Nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh class B cirrhosis: safety and clinical outcomes in a retrospective case series. Cancer. 2019;125(18):3234–3241. doi:10.1002/cncr.32206
  • NCCN. NCCN guidelines® updates: hepatobiliary cancers. J Natl Compr Canc Netw. 2021;19(5):xix–xx.
  • Chen CT, Feng YH, Yen CJ, et al. Prognosis and treatment pattern of advanced hepatocellular carcinoma after failure of first-line atezolizumab and bevacizumab treatment. Hepatol Int. 2022;16(5):1199–1207. doi:10.1007/s12072-022-10392-x
  • eUpdate. Hepatocellular carcinoma algorithm; 2022. Available from: https://www.esmo.org/guidelines/guidelines-by-topic/gastrointestinal-cancers/hepatocellular-carcinoma/eupdate-hepatocellular-carcinoma-algorithm. Accessed August 29, 2023.
  • Rizzo A, Cusmai A, Gadaleta-Caldarola G, Palmiotti G. Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma? Expert Rev Gastroenterol Hepatol. 2022;16(4):333–339. doi:10.1080/17474124.2022.2064273
  • Di Federico A, Rizzo A, Carloni R, et al. Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: preclinical rationale and ongoing clinical trials. Expert Opin Investig Drugs. 2022;31(4):361–369. doi:10.1080/13543784.2022.2009455
  • Rizzo A, Ricci AD, Gadaleta-Caldarola G, Brandi G. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Rev Gastroenterol Hepatol. 2021;15(11):1245–1251. doi:10.1080/17474124.2021.1973431