222
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Immune Effects of Cryoablation in Woodchuck Hepatocellular Carcinoma

ORCID Icon, , , , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1973-1990 | Received 06 Jul 2023, Accepted 24 Oct 2023, Published online: 06 Nov 2023

References

  • Cazzato RL, Garnon J, Ramamurthy N, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol. 2016;33:140. doi:10.1007/s12032-016-0848-3
  • Greten TF, Mauda-Havakuk M, Heinrich B, et al. Combined locoregional-immunotherapy for liver cancer. J Hepatol. 2019;70:999–1007. doi:10.1016/j.jhep.2019.01.027
  • Erinjeri JP, Fine GC, Adema GJ, et al. Immunotherapy and the interventional oncologist: challenges and opportunities-a society of interventional oncology white paper. Radiology. 2019;292:25–34. doi:10.1148/radiol.2019182326
  • Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–313. doi:10.1038/s41575-020-00395-0
  • Jansen MC, van Hillegersberg R, Schoots IG, et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery. 2010;147:686–695. doi:10.1016/j.surg.2009.10.053
  • Chapman WC, Debelak JP, Wright Pinson C, et al. Hepatic cryoablation, but not radiofrequency ablation, results in lung inflammation. Ann Surg. 2000;231:752–761. doi:10.1097/00000658-200005000-00016
  • Kim GM, Won JY, Kim MD, et al. Cryoablation of hepatocellular carcinoma with high-risk for percutaneous ablation: safety and efficacy. Cardiovasc Intervent Radiol. 2016;39:1447–1454. doi:10.1007/s00270-016-1384-4
  • Yang WL, Addona T, Nair DG, et al. Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction. Int J Cancer. 2003;103:360–369. doi:10.1002/ijc.10822
  • Yang X, Guo Y, Guo Z, et al. Cryoablation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Oncotarget. 2019;10:4180–4191. doi:10.18632/oncotarget.24105
  • Niu L, Li J, Zeng J, et al. Comparison of percutaneous cryoablation with microwave ablation in a porcine liver model. Cryobiology. 2014;68:194–199. doi:10.1016/j.cryobiol.2014.01.005
  • Surtees B, Young S, Hu Y, et al. Validation of a low-cost, carbon dioxide-based cryoablation system for percutaneous tumor ablation. PLoS One. 2019;14:e0207107. doi:10.1371/journal.pone.0207107
  • Tennant BC, Toshkov IA, Peek SF, et al. Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology. 2004;127:S283–S93.
  • Roggendorf M, Kosinska AD, Liu J, Lu M. The woodchuck, a nonprimate model for immunopathogenesis and therapeutic immunomodulation in chronic hepatitis B virus infection. Cold Spring Harb Perspect Med. 2015;2015:5.
  • Burke CT, Cullen JM, State A, et al. Development of an animal model for radiofrequency ablation of primary, virally induced hepatocellular carcinoma in the woodchuck. J Vasc Interv Radiol. 2011;22(1613):e1. doi:10.1016/j.jvir.2011.08.020
  • Pritchard WF, Woods DL, Esparza-Trujillo JA, et al. Transarterial chemoembolization in a woodchuck model of hepatocellular carcinoma. J Vasc Interv Radiol. 2020;31:812–9.e1. doi:10.1016/j.jvir.2019.08.031
  • Kim AY, Yacoub JH, Field DH, et al. Suitability of the woodchuck HCC as a preclinical model for evaluation of intra-arterial therapies. Animal Model Exp Med. 2020;3:98–102. doi:10.1002/ame2.12100
  • Wilkins LR, Stone JR, Mata J, et al. The use of the woodchuck as an animal model for evaluation of transarterial embolization. J Vasc Interv Radiol. 2017;28:1467–1471. doi:10.1016/j.jvir.2017.04.005
  • Mauda-Havakuk M, Mikhail AS, Starost MF, et al. Imaging, pathology, and immune correlates in the woodchuck hepatic tumor model. J Hepatocell Carcinoma. 2021;8:71–83. doi:10.2147/JHC.S287800
  • Esparza-Trujillo JA, Pritchard WF, Mauda-Havakuk M, et al. Imaging and pathologic evaluation of cryoablation of woodchuck (Marmota monax) hepatocellular carcinoma. Comp Med. 2023;73(2):127–133. doi:10.30802/AALAS-CM-22-000092
  • Mikhail AS, Mauda-Havakuk M, Partanen A, et al. Liver-specific 3D sectioning molds for correlating in vivo CT and MRI with tumor histopathology in woodchucks (Marmota monax). PLoS One. 2020;2020:15.
  • Mikhail AS, Mauda-Havakuk M, Negussie AH, et al. Evaluation of immune-modulating drugs for use in drug-eluting microsphere transarterial embolization. Int J Pharm. 2022;616(121466):121466. doi:10.1016/j.ijpharm.2022.121466
  • Roth GS, Decaens T. Liver immunotolerance and hepatocellular carcinoma: patho-physiological mechanisms and therapeutic perspectives. Eur J Cancer. 2017;87:101–112. doi:10.1016/j.ejca.2017.10.010
  • Ishiyama K, Ohdan H, Ohira M, et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology. 2006;43:362–372. doi:10.1002/hep.21035
  • Han C, Jiang Y, Wang Z, Wang H. Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol. 2019;73:10–16. doi:10.1016/j.intimp.2019.04.057
  • Waitz R, Solomon SB, Petre EN, et al. Potent induction of tumor immunity by combining tumor cryoablation with Anti-CTLA-4 Therapy. Cancer Res. 2011;72:430–439. doi:10.1158/0008-5472.CAN-11-1782
  • McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res. 2016;22:5729–5737. doi:10.1158/1078-0432.CCR-16-0190
  • Agdashian D, ElGindi M, Xie C, et al. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma. Cancer Immunol Immunother. 2019;68:599–608. doi:10.1007/s00262-019-02299-8
  • Yakkala C, Chiang CL, Kandalaft L, et al. Cryoablation and Immunotherapy: an enthralling synergy to confront the tumors. Front Immunol. 2019;10:2283. doi:10.3389/fimmu.2019.02283
  • Redondo P, Del Olmo J, Lopez-Diaz de Cerio A, et al. Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions. J Invest Dermatol. 2007;127:1673–1680. doi:10.1038/sj.jid.5700777
  • Ahmed M, Kumar G, Moussa M, et al. Hepatic radiofrequency ablation-induced stimulation of distant tumor growth is suppressed by c-met inhibition. Radiology. 2016;279:103–117. doi:10.1148/radiol.2015150080
  • Ahmed M, Kumar G, Gourevitch S, et al. Radiofrequency ablation (RFA)-induced systemic tumor growth can be reduced by suppression of resultant heat shock proteins. Int J Hyperthermia. 2018;34:934–942. doi:10.1080/02656736.2018.1462535
  • Tanis E, Nordlinger B, Mauer M, et al. Local recurrence rates after radiofrequency ablation or resection of colorectal liver metastases. Analysis of the European organisation for research and treatment of cancer #40004 and #40983. Eur J Cancer. 2014;50:912–919. doi:10.1016/j.ejca.2013.12.008
  • Shi L, Wang J, Ding N, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421. doi:10.1038/s41467-019-13204-3
  • Wing MG, Rogers K, Jacob G, Rees RC. Characterisation of suppressor cells generated following cryosurgery of an HSV-2-induced fibrosarcoma. Cancer Immunol Immunother. 1988;26:169–175. doi:10.1007/BF00205611
  • Helmberger T. The evolution of interventional oncology in the 21st century. Br J Radiol. 2020;93:20200112. doi:10.1259/bjr.20200112
  • Shao Q, O’Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int J Hyperthermia. 2019;36:130–138. doi:10.1080/02656736.2018.1539253
  • Hou J, Zhang H, Sun B, Karin M. The immunobiology of hepatocellular carcinoma in humans and mice: basic concepts and therapeutic implications. J Hepatol. 2020;72:167–182. doi:10.1016/j.jhep.2019.08.014
  • Lawal G, Xiao Y, Rahnemai-Azar AA, et al. The immunology of hepatocellular carcinoma. Vaccines. 2021;9:1184. doi:10.3390/vaccines9101184
  • Gamrekelashvili J, Kruger C, von Wasielewski R, et al. Necrotic tumor cell death in vivo impairs tumor-specific immune responses. J Immunol. 2007;178:1573–1580. doi:10.4049/jimmunol.178.3.1573
  • Janke LJ, Ward JM, Vogel P. Classification, scoring, and quantification of cell death in tissue sections. Vet Pathol. 2019;56:33–38. doi:10.1177/0300985818800026