231
Views
13
CrossRef citations to date
0
Altmetric
Review

Current Understanding of Nasal Epithelial Cell Mis-Differentiation

, &
Pages 309-317 | Published online: 13 Dec 2019

References

  • Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 1998;29:3–12. doi:10.1016/S0169-409X(97)00058-610837577
  • Kern RC. Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope. 2000;110:1071–1077. doi:10.1097/00005537-200007000-0000110892672
  • Dawes JD, Prichard MM. Studies of the vascular arrangements of the nose. J Anat. 1953;87:311–322.13069386
  • Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC. Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol. 2007;120:1279–1284. doi:10.1016/j.jaci.2007.08.04617949801
  • Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130:1087–1096 e1010. doi:10.1016/j.jaci.2012.05.05222840853
  • Vlastos I, Athanasopoulos I, Mastronikolis NS, et al. Impaired mucociliary clearance in allergic rhinitis patients is related to a predisposition to rhinosinusitis. Ear Nose Throat J. 2009;88:E17–E19.
  • Ramanathan M Jr., Lee WK, Spannhake EW, Lane AP. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol. 2008;22:115–121. doi:10.2500/ajr.2008.22.313618416964
  • Contoli M, Ito K, Padovani A, et al. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy. 2015;70:910–920. doi:10.1111/all.1262725858686
  • Wanner A, Salathe M, O’Riordan TG. Mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154:1868–1902. doi:10.1164/ajrccm.154.6.89703838970383
  • Damseh N, Quercia N, Rumman N, Dell SD, Kim RH. Primary ciliary dyskinesia: mechanisms and management. Appl Clin Genet. 2017;10:67–74. doi:10.2147/TACG.S12712929033599
  • Jiao J, Zhang L. Influence of intranasal drugs on human nasal mucociliary clearance and ciliary beat frequency. Allergy Asthma Immunol Res. 2019;11:306–319. doi:10.4168/aair.2019.11.3.30630912321
  • Baird AR, Hilmi O, White PS, Robertson AJ. Epithelial atypia and squamous metaplasia in nasal polyps. J Laryngol Otol. 1998Aug;112(8):755–757. doi:10.4414/smw.2019.201049850317
  • Noutsios GT, Sharma S. Chronic rhinosinusitis in unified airway disease: surfactant proteins as mediators of respiratory immunity. Swiss Med Wkly. 2019;149:w20104. doi:10.4414/smw.2019.2010431302901
  • Ponikau JU, Sherris DA, Kephart GM, et al. Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis: is the histopathology similar to asthma? J Allergy Clin Immunol. 2003;112:877–882. doi:10.1016/j.jaci.2003.08.00914610473
  • Zhao R, Guo Z, Zhang R, et al. Nasal epithelial barrier disruption by particulate matter </=2.5 mum via tight junction protein degradation. J Appl Toxicol. 2018;38:678–687. doi:10.1002/jat.357329235125
  • Koizumi J, Kojima T, Kamekura R, et al. Changes of gap and tight junctions during differentiation of human nasal epithelial cells using primary human nasal epithelial cells and primary human nasal fibroblast cells in a noncontact coculture system. J Membr Biol. 2007;218:1–7. doi:10.1007/s00232-007-9029-917623229
  • Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375. doi:10.1083/jcb.17.2.37513944428
  • France MM, Turner JR. The mucosal barrier at a glance. J Cell Sci. 2017;130:307–314. doi:10.1242/jcs.19348228062847
  • Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–165. doi:10.1016/j.semcdb.2014.08.01125171873
  • Steed E, Rodrigues NTL, Balda MS, Matter K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol. 2009;10:95. doi:10.1186/1471-2121-10-9520028514
  • Tsukita S, Furuse M. Claudin-based barrier in simple and stratified cellular sheets. Curr Opin Cell Biol. 2002;14:531–536. doi:10.1016/S0955-0674(02)00362-912231346
  • Gunzel D, Fromm M. Claudins and other tight junction proteins. Compr Physiol. 2012;2:1819–1852. doi:10.1002/cphy.c11004523723025
  • Schlingmann B, Molina SA, Koval M. Claudins: gatekeepers of lung epithelial function. Semin Cell Dev Biol. 2015;42:47–57. doi:10.1016/j.semcdb.2015.04.00925951797
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Bba-Biomembranes. 2008;1778:631–645. doi:10.1016/j.bbamem.2007.10.01818036336
  • Gunzel D. Claudins and the modulation of tight junction permeability. Acta Physiol. 2017;219:7.
  • Milatz S, Krug SM, Rosenthal R, et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta. 2010;1798:2048–2057. doi:10.1016/j.bbamem.2010.07.01420655293
  • Acharya P, Beckel J, Ruiz WG, et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, −8, and −12 in bladder epithelium. Am J Physiol Renal Physiol. 2004;287:F305–F318. doi:10.1152/ajprenal.00341.200315068973
  • Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JG, Jacobson JR. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol. 2014;50:328–336. doi:10.1165/rcmb.2013-0058OC24028293
  • Markov AG, Veshnyakova A, Fromm M, Amasheh M, Amasheh S. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B. 2010;180:591–598. doi:10.1007/s00360-009-0440-720049600
  • Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–1788. doi:10.1083/jcb.123.6.17778276896
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939–945. doi:10.1083/jcb.20051004316365161
  • Mariano C, Sasaki H, Brites D, Brito MA. A look at tricellulin and its role in tight junction formation and maintenance (vol 90, pg 787. 2011). Eur J Cell Biol. 2011;90:1061. doi:10.1016/j.ejcb.2011.09.001
  • Raleigh DR, Marchiando AM, Zhang Y, et al. Tight junction-associated MARVEL proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 2010;21:1200–1213. doi:10.1091/mbc.E09-08-073420164257
  • Schulzke JD, Gitter AH, Mankertz J, et al. Epithelial transport and barrier function in occludin-deficient mice. Bba-Biomembranes. 2005;1669:34–42. doi:10.1016/j.bbamem.2005.01.00815842997
  • Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000;11:4131–4142. doi:10.1091/mbc.11.12.413111102513
  • Saitou M, Fujimoto K, Doi Y, et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol. 1998;141:397–408. doi:10.1083/jcb.141.2.3979548718
  • Cummins PM. Occludin: one protein, many forms. Mol Cell Biol. 2012;32:242–250. doi:10.1128/MCB.06029-1122083955
  • Post S, Nawijn MC, Hackett TL, et al. The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax. 2012;67:488–495. doi:10.1136/thoraxjnl-2011-20060622167364
  • De Benedetto A, Rafaels NM, McGirt LY, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immun. 2011;127:773–U439. doi:10.1016/j.jaci.2010.10.01821163515
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. Jala-J Lab Autom. 2015;20:107–126. doi:10.1177/2211068214561025
  • Hay ED. Interaction of embryonic-cell surface and cytoskeleton with extracellular-matrix. Am J Anat. 1982;165:1–12. doi:10.1002/aja.10016501027137055
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890. doi:10.1016/j.cell.2009.11.00719945376
  • Gracia M, Theis S, Proag A, Gay G, Benassayag C, Suzanne M. Mechanical impact of epithelial-mesenchymal transition on epithelial morphogenesis in Drosophila. Nat Commun. 2019;10:2951. doi:10.1038/s41467-019-10720-031273212
  • Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365:495–506. doi:10.1007/s00441-016-2464-027461257
  • McCormack N, O’Dea S. Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell Signal. 2013;25:2856–2862. doi:10.1016/j.cellsig.2013.09.01224044921
  • Taipale J, Beachy PA. The Hedgehog and Wnt signaling pathways in cancer. Nature. 2001;411:349–354. doi:10.1038/3507721911357142
  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7. doi:10.1126/scisignal.2005189
  • Huang RY, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 2012;125:4417–4422. doi:10.1242/jcs.09969723165231
  • Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol. 2007;293:L525–L534. doi:10.1152/ajplung.00163.2007
  • Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am J Respir Crit Care Med. 2009;180:122–133. doi:10.1164/rccm.200811-1730OC19406982
  • Shin HW, Cho K, Kim DW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012;185:944–954. doi:10.1164/rccm.201109-1706OC22323302
  • Lee HM, Kang JH, Shin JM, Lee SA, Park IH. Chemical chaperone of endoplasmic reticulum stress inhibits epithelial-mesenchymal transition induced by TGF-beta1 in airway epithelium via the c-Src pathway. Mediators Inflamm. 2017;2017:8123281. doi:10.1155/2017/812328128804222
  • Lyons JG, Birkedalhansen B, Pierson MC, Whitelock JM, Birkedalhansen H. Interleukin-1-beta and transforming growth-factor-alpha epidermal growth-factor induce expression of M(R) 95,000 Type-Iv collagenase gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J Biol Chem. 1993;268:19143–19151.8395530
  • Grande M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci. 2002;115:4227–4236. doi:10.1242/jcs.0009112376555
  • Uttamsingh S, Bao X, Nguyen KT, et al. Synergistic effect between EGF and TGF-beta 1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene. 2008;27:2626–2634. doi:10.1038/sj.onc.121091517982486
  • Musaelyan A, Lapin S, Nazarov V, et al. Vimentin as antigenic target in autoimmunity: a comprehensive review. Autoimmun Rev. 2018;17:926–934. doi:10.1016/j.autrev.2018.04.00430009963
  • Johnson JR, Roos A, Berg T, Nord M, Fuxe J. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PLoS One. 2011;6:e16175. doi:10.1371/journal.pone.001617521283768
  • Zou Y, Song W, Zhou L, Mao Y, Hong W. House dust mite induces Sonic hedgehog signaling that mediates epithelial-mesenchymal transition in human bronchial epithelial cells. Mol Med Rep. 2019;20:4674–4682. doi:10.3892/mmr.2019.1070731702025
  • Wang K, Pan L, Che XM, Cui DM, Li C. Sonic Hedgehog/GLI1 signaling pathway inhibition restricts cell migration and invasion in human gliomas. Neurol Res. 2010;32:975–980. doi:10.1179/016164110x1268129083136020444323
  • Konnecke M, Burmeister M, Pries R, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates. Arch Immunol Ther Ex. 2017;65:157–173. doi:10.1007/s00005-016-0409-7
  • Yan B, Wang Y, Li Y, Wang CS, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rh. 2019;9:270–280. doi:10.1002/alr.22243
  • Masterson JC, Molloy EL, Gilbert JL, McCormack N, Adams A, O’Dea S. Bone morphogenetic protein signalling in airway epithelial cells during regeneration. Cell Signal. 2011;23:398–406. doi:10.1016/j.cellsig.2010.10.01020959141
  • Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinology. 2012;50:1–298. doi:10.4193/Rhino50E222469599
  • Toppila-Salmi S, van Drunen CM, Fokkens WJ, et al. Molecular mechanisms of nasal epithelium in rhinitis and rhinosinusitis. Curr Allergy Asthm R. 2015;15:495. doi:10.1007/s11882-014-0495-8
  • Honkanen T, Luukkainen A, Lehtonen M, et al. Indoleamine 2,3-dioxygenase expression is associated with chronic rhinosinusitis with nasal polyps and antrochoanal polyps. Rhinology. 2011;49:356–363. doi:10.4193/Rhino10.19121858269
  • Honkova L, Uhlik J, Berankova K, Svobodova T, Pohunek P. Epithelial basement membrane thickening is related to TGF-Beta 1 expression in children with chronic respiratory diseases. Pediat Allerg Imm-Uk. 2014;25:593–599. doi:10.1111/pai.12275
  • Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234:14535–14555. doi:10.1002/jcp.28160
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–1428. doi:10.1172/Jci3910419487818
  • Ramanathan M, Lane AP. Innate immunity of the sinonasal cavity and its role in chronic rhinosinusitis. Otolaryng Head Neck. 2007;136:348–356. doi:10.1016/j.otohns.2006.11.011
  • Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev. 2000;173:27–38. doi:10.1034/j.1600-065x.2000.917304.x10719665
  • van Drunen CM, Mjosberg JM, Segboer CL, Cornet ME, Fokkens WJ. Role of innate immunity in the pathogenesis of chronic rhinosinusitis: progress and new avenues. Curr Allergy Asthma Rep. 2012;12:120–126. doi:10.1007/s11882-012-0249-422311575
  • Cario E. Bacterial interactions with cells of the intestinal mucosa: toll-like receptors and NOD2. Gut. 2005;54:1182–1193. doi:10.1136/gut.2004.06279415840688
  • Martinez I, Oliveros JC, Cuesta I, et al. Apoptosis, toll-like, RIG-I-like and NOD-like receptors are pathways jointly induced by diverse respiratory bacterial and viral pathogens. Front Microbiol. 2017;8:276. doi:10.3389/fmicb.2017.0027628298903
  • Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95:149–178. doi:10.1152/physrev.00009.201425540141
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34. doi:10.3109/08830185.2010.52997621235323
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384. doi:10.1038/ni.186320404851
  • Wilkins C, Gale M Jr. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol. 2010;22:41–47. doi:10.1016/j.coi.2009.12.00320061127
  • Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;4:333. doi:10.3389/fimmu.2013.0033324137163
  • Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J. 2016;57:5–14. doi:10.3349/ymj.2016.57.1.526632377
  • Derycke L, Eyerich S, Van Crombruggen K, et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS One. 2014;9:e97581. doi:10.1371/journal.pone.009758124911279
  • Hussain I, Jain VV, Kitagaki K, Businga TR, O’Shaughnessy P, Kline JN. Modulation of murine allergic rhinosinusitis by CpG oligodeoxynucleotides. Laryngoscope. 2002;112:1819–1826. doi:10.1097/00005537-200210000-0002112368622
  • Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15:410–416. doi:10.1038/nm.194619330007
  • Hysi P, Kabesch M, Moffatt MF, et al. NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet. 2005;14:935–941. doi:10.1093/hmg/ddi08715718249
  • Hammad H, Lambrecht BN. Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy. 2011;66:579–587. doi:10.1111/j.1398-9995.2010.02528.x21251015
  • Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis, pharmaceutical therapy options. Laryngo Rhino Otol. 2015;94:S32–S63. doi:10.1055/s-0034-1396870
  • Rajagopala SV, Vashee S, Oldfield LM, et al. The human microbiome and cancer. Cancer Prev Res. 2017;10:226–234. doi:10.1158/1940-6207.Capr-16-0249
  • Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genom Hum G. 2012;13:151–170. doi:10.1146/annurev-genom-090711-163814
  • Eidi S, Kamali SA, Hajari Z, et al. Nasal and indoors fungal contamination in healthy subjects. Health Scope. 2016;5. doi:10.5812/jhealthscope.
  • Charlson ES, Diamond JM, Bittinger K, et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med. 2012;186:536–545. doi:10.1164/rccm.201204-0693OC22798321
  • Hoggard M, Biswas K, Zoing M, Wagner Mackenzie B, Taylor MW, Douglas RG. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2017;7:230–239. doi:10.1002/alr.2187127879060
  • Choi EB, Hong SW, Kim DK, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy. 2014;69:517–526. doi:10.1111/all.1237424611950