143
Views
11
CrossRef citations to date
0
Altmetric
Review

Impact of polyphenols in phagocyte functions

, &
Pages 205-217 | Published online: 21 Aug 2019

References

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–747. doi:10.1093/ajcn/79.5.72715113710
  • Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr. 2014;5(5):515–533.25469384
  • Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta Gen Subj. 2016;1860(10):2107–2121. doi:10.1016/j.bbagen.2016.06.022
  • Dugo L, Belluomo MG, Fanali C, et al. Effect of cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to anti-inflammatory M2 state. Oxid Med Cell Longev. 2017;2017:6293740. doi:10.1155/2017/629374028744339
  • Aharoni S, Lati Y, Aviram M, Fuhrman B. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state. BioFactors. 2015;41(1):44–51. doi:10.1002/biof.119925650983
  • Bu SY, Lerner M, Stoecker BJ, et al. Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int. 2008;82(6):475–488. doi:10.1007/s00223-008-9139-018509698
  • Hooshmand S, Kumar A, Zhang JY, Johnson SA, Chai SC, Arjmandi BH. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells. Food Funct. 2015;6(5):1719–1725. doi:10.1039/c5fo00173k25921826
  • Cheng A, Yan H, Han C, Wang W, Tian Y, Chen X. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. Int J Biol Macromol. 2014;69:382–387. doi:10.1016/j.ijbiomac.2014.05.07124905959
  • Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:3. doi:10.1101/cshperspect.a006049
  • Kumazoe M, Nakamura Y, Yamashita M, et al. Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216. J Biol Chem. 2017;292(10):4077–4088. doi:10.1074/jbc.M116.75595928154178
  • Byun EB, Choi HG, Sung NY, Byun EH. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells. Biochem Biophys Res Commun. 2012;426(4):480–485. doi:10.1016/j.bbrc.2012.08.09622960171
  • Chen X, Chang L, Qu Y, Liang J, Jin W, Xia X. Tea polyphenols inhibit the proliferation, migration, and invasion of melanoma cells through the down-regulation of TLR4. Int J Immunopathol Pharmacol. 2018;32:039463201773953. doi:10.1177/0394632017739531
  • Lu X, Ma L, Ruan L, et al. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation. 2010;7(1):46. doi:10.1186/1742-2094-7-5920712904
  • Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem. 2012;120(3):461–472. doi:10.1111/j.1471-4159.2011.07594.x22118570
  • Meng Z, Yan C, Deng Q, Gao D, Niu X. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin. 2013;34(7):901–911. doi:10.1038/aps.2013.2423645013
  • Tu C, Han B, Yao Q, Zhang Y, Liu H, Zhang S. Curcumin attenuates concanavalin A-induced liver injury in mice by inhibition of toll-like receptor (TLR) 2, TLR4 and TLR9 expression. Int Immunopharmacol. 2012;12(1):151–157. doi:10.1016/j.intimp.2011.11.00522138522
  • Huang S, Zhao L, Kim K, Lee DS, Hwang DH. Inhibition of Nod2 signaling and target gene expression by curcumin. Mol Pharmacol. 2008;74(1):274. doi:10.1124/mol.108.04616918413660
  • Lee K-M, Kang JH, Yun M, Lee S-B. Quercetin inhibits the poly(dA: dT)-inducedsecretion of IL-18 via down-regulation of the expressions of AIM2 and pro-caspase-1 by inhibiting the JAK2/STAT1 pathway in IFN-γ-primed human keratinocytes. Biochem Biophys Res Commun. 2018;503(1):116–122. doi:10.1016/j.bbrc.2018.05.19129857000
  • Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707. doi:10.1016/j.immuni.2014.10.00825517612
  • Ingersoll MA, Platt AM, Potteaux S, Randolph GJ. Monocyte trafficking in acute and chronic inflammation. Trends Immunol. 2011;32(10):470–477. doi:10.1016/j.it.2011.05.00121664185
  • Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7–22. doi:10.1177/030098581246988323345459
  • Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol. 2011;6:323. doi:10.1146/annurev-pathol-011110-13022421073340
  • Pastore S, Lulli D, Fidanza P, et al. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid Redox Signal. 2012;16(4):314–328. doi:10.1089/ars.2011.405321967610
  • Pastore S, Potapovich A, Kostyuk V, et al. Plant polyphenols effectively protect HaCaT cells from ultraviolet C-triggered necrosis and suppress inflammatory chemokine expression. Ann N Y Acad Sci. 2009;1171(1):305–313. doi:10.1111/j.1749-6632.2009.04684.x19723070
  • Maloney JP, Gao L. Proinflammatory cytokines increase vascular endothelial growth factor expression in alveolar epithelial cells. Mediators Inflamm. 2015;2015:1–7. doi:10.1155/2015/387842
  • Supanc V, Kes V, Biloglav Z, Demarin V. Role of cell adhesion molecules in acute ischemic stroke. Ann Saudi Med. 2011;31(4):365. doi:10.4103/0256-4947.8321721808112
  • Demerath E, Towne B, Blangero J, Siervogel RM. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol. 2001;28(6):664–678.11726042
  • Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep. 2013;15(5):324. doi:10.1007/s11883-013-0324-x23512608
  • Chiva-Blanch G, Urpi-Sarda M, Llorach R, et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr. 2012;95(2):326–334. doi:10.3945/ajcn.111.02288922205309
  • Deng Y-H, Alex D, Huang H-Q, et al. Inhibition of TNF-α-mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4′-trimethoxystilbene. Phyther Res. 2010;25(3):451–457.
  • Estruch R, Martínez-González MA, Corella D, et al. Effects of a mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11. doi:10.7326/0003-4819-145-1-200607040-0000416818923
  • Xu Z-R, Li J-Y, Dong X-W, et al. Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-κB pathway. Nutrients. 2015;7(8):7085–7105. doi:10.3390/nu708532426305254
  • Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264(1):182–203. doi:10.1111/imr.1226625703560
  • Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. J Biol Chem. 2003;278(26):24233–24241. doi:10.1074/jbc.M21238920012711606
  • Savolainen H. Tannin content of tea and coffee. J Appl Toxicol. 1992;12:191–192.1629514
  • Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113(Suppl. 9B):71S–88S. doi:10.1016/S0002-9343(01)00995-012566142
  • El-Sayed IH, Lotfy M, El-Khawaga O-AY, et al. Prominent free radicals scavenging activity of tannic acid in lead-induced oxidative stress in experimental mice. Toxicol Ind Health. 2006;22(4):157–163. doi:10.1191/0748233706th256oa16786837
  • Srivastava RC, Husain MM, Hasan SK, Athar M. Green tea polyphenols and tannic acid act as potent inhibitors of phorbol ester-induced nitric oxide generation in rat hepatocytes independent of their antioxidant properties. Cancer Lett. 2000;153(1–2):1–5.10779623
  • Číž M, Pavelková M, Gallová L, et al. The influence of wine polyphenols on reactive oxygen and nitrogen species production by murine macrophages RAW 264.7. Physiol Res. 2008;57:393–402.17465695
  • Crispo JAG, Ansell DR, Piche M, et al. Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells. Can J Physiol Pharmacol. 2010;88(4):429–438. doi:10.1139/y09-13720555411
  • Lorenz M, Wessler S, Follmann E, et al. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem. 2004;279(7):6190–6195. doi:10.1074/jbc.M30911420014645258
  • Medina-Remón A, Tresserra-Rimbau A, Pons A, et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis. 2015;25(1):60–67. doi:10.1016/j.numecd.2014.09.00125315667
  • Rodrigo R, Libuy M, Feliu F, Hasson D. Polyphenols in disease: from diet to supplements. Curr Pharm Biotechnol. 2014;15(4):304–317.25312616
  • Huang S-M, Wu C-H, Yen G-C. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res. 2006;50(12):1129–1139. doi:10.1002/mnfr.20060007517103373
  • Duthie SJ, Dobson VL. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. Eur J Nutr. 1999;38(1):28–34.10338685
  • Cho D-I, Koo N-Y, Chung WJ, et al. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action. Life Sci. 2002;71(17):2071–2082. doi:10.1016/s0024-3205(02)01971-912175900
  • Benito S, Lopez D, Sáiz MP, et al. A flavonoid-rich diet increases nitric oxide production in rat aorta. Br J Pharmacol. 2002;135(4):910–916. doi:10.1038/sj.bjp.070453411861318
  • Peng X, Zhou R, Wang B, et al. Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep. 2014;4:6251. doi:10.1038/srep0625125176280
  • Derochette S, Franck T, Mouithys-Mickalad A, et al. Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact. 2013;206(2):186–193. doi:10.1016/j.cbi.2013.09.01124060679
  • Boonla O, Kukongviriyapan U, Pakdeechote P, et al. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide. 2014;42:44–53. doi:10.1016/j.niox.2014.09.00125194767
  • Ciftci G, Aksoy A, cenesiz S, et al. Therapeutic role of curcumin in oxidative DNA damage caused by formaldehyde. Microsc Res Tech. 2015;78(5):391–395. doi:10.1002/jemt.2248525761397
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. doi:10.1097/WOX.0b013e318243961323268465
  • Ciocoiu M, Mirón A, Mares L, et al. The effects of sambucus nigra polyphenols on oxidative stress and metabolic disorders in experimental diabetes mellitus. J Physiol Biochem. 2009;65(3):297–304. doi:10.1007/BF0318058220119824
  • Uto-Kondo H, Ayaori M, Kishimoto Y, et al. Consumption of polyphenol-rich juar tea increases endothelium-bound extracellular superoxide dismutase levels in men with metabolic syndrome: link with LDL oxidizability. Int J Food Sci Nutr. 2013;64(4):407–414. doi:10.3109/09637486.2012.75918523317012
  • Losada-Barreiro S, Bravo-Díaz C. Free radicals and polyphenols: the redox chemistry of neurodegenerative diseases. Eur J Med Chem. 2017;133:379–402. doi:10.1016/j.ejmech.2017.03.06128415050
  • Cui Y, Madeddu P. The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing. Curr Pharm Des. 2011;17(30):3271–3279.21919879
  • Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017;4(1):55. doi:10.1093/rb/rbw04128149530
  • Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103(5):398. doi:10.1007/s00395-008-0733-018600364
  • Golden-Mason L, Rosen HR. Natural killer cells: multi-faceted players with key roles in hepatitis C immunity. Immunol Rev. 2013;255(1):68. doi:10.1111/imr.1209023947348
  • Chuang Y, Knickel BK, Leonard JN. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. Innate Immun. 2016;22(8):647. doi:10.1177/175342591666824327670945
  • Matsuyama T, Kawai T, Izumi Y, Taubman MA. Expression of major histocompatibility complex class II and CD80 by gingival epithelial cells induces activation of CD4+ T cells in response to bacterial challenge. Infect Immun. 2005;73(2):1044–1051. doi:10.1128/IAI.73.2.1044-1051.200515664948
  • Dimitrios B. Sources of natural phenolic antioxidants. Trends Food Sci Technol. 2006;17(9):505–512. doi:10.1016/j.tifs.2006.04.004
  • Miles EA, Zoubouli P, Calder PC. Effects of polyphenols on human Th1 and Th2 cytokine production. Clin Nutr. 2005;24(5):780–784. doi:10.1016/j.clnu.2005.04.00115908056
  • Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production bu human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39(1):41–47. doi:10.1006/phrs.1998.040410051376
  • Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells. Indian J Clin Biochem. 2015;30(1):109–112. doi:10.1007/s12291-014-0452-225646051
  • Funaro A, Wu X, Song M, et al. Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin. J Food Sci. 2016;81(5):H1320–H1327. doi:10.1111/1750-3841.1330027095513
  • Zhu L-H, Bi W, Qi R, Wang H, Lu D. Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int J Neurosci. 2011;121(6):329–336. doi:10.3109/00207454.2011.56904021631167
  • Park CM, Jin K-S, Lee Y-W, Song YS. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-κB translocation in LPS stimulated RAW 264.7 cells. Eur J Pharmacol. 2011;660(2–3):454–459. doi:10.1016/j.ejphar.2011.04.00721513709
  • Weng Z, Patel AB, Vasiadi M, Therianou A, Theoharides TC. Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS One. 2014;9(2):e90739. doi:10.1371/journal.pone.009073924587411
  • Bureau G, Longpré F, Martinoli M-G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res. 2008;86(2):403–410. doi:10.1002/jnr.2150317929310
  • Chen T-J, Jeng J-Y, Lin C-W, Wu C-Y, Chen Y-C. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology. 2006;223(1–2):113–126. doi:10.1016/j.tox.2006.03.00716647178
  • Sharma A, Kaur M, Katnoria JK, Nagpal AK. Polyphenols in food: cancer prevention and apoptosis induction. Curr Med Chem. 2017;24:4740–1757.
  • Tanikawa M, Lee H-Y, Watanabe K, et al. Regulation of prostaglandin biosynthesis by interleukin-1 in cultured bovine endometrial cells. J Endocrinol. 2008;199(3):425–434. doi:10.1677/JOE-08-023718824521
  • Argaw AT, Zhang Y, Snyder BJ, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177(8):5574–5584. doi:10.4049/jimmunol.177.8.557417015745
  • Aribi M, Moulessehoul S, Kendouci-Tani M, Benabadji A-B, Hichami A, Khan NA. Relationship between interleukin-1beta and lipids in type 1 diabetic patients. Med Sci Monit. 2007;13(8):CR372–CR378.17660728
  • Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254–1266. doi:10.7150/ijbs.467923136554
  • Wheeler DS, Catravas JD, Odoms K, Denenberg A, Malhotra V, Wong HR. Epigallocatechin-3-gallate, a green tea–derived polyphenol, inhibits IL-1β-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr. 2004;134(5):1039–1044. doi:10.1093/jn/134.5.103915113942
  • Ahmed S. Green tea polyphenol pigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1-induced expression of matrix metalloproteinase-1 and −13 in human chondrocytes. J Pharmacol Exp Ther. 2003;308(2):767–773. doi:10.1124/jpet.103.05922014600251
  • Guo W, Wise ML, Collins FW, Meydani M. Avenanthramides, polyphenols from oats, inhibit IL-1β-induced NF-κB activation in endothelial cells. Free Radic Biol Med. 2008;44(3):415–429. doi:10.1016/j.freeradbiomed.2007.10.03618062932
  • Hirano T. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):717–730. doi:10.2183/pjab.86.717
  • Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta Mol Cell Res. 2011;1813(5):878–888. doi:10.1016/j.bbamcr.2011.01.034
  • Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience. 2013;252:320–325. doi:10.1016/j.neuroscience.2013.08.02523994594
  • Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and alzheimer’s disease. Biochem Pharmacol. 2014;88(4):594–604. doi:10.1016/j.bcp.2014.01.00824445162
  • Voorhees JL, Tarr AJ, Wohleb ES, et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS One. 2013;8(3):e58488. doi:10.1371/journal.pone.005848823520517
  • Drummond EM, Harbourne N, Marete E, et al. Inhibition of proinflammatory biomarkers in THP1 macrophages by polyphenols derived from chamomile, meadowsweet and willow bark. Phyther Res. 2013;27(4):588–594. doi:10.1002/ptr.4753
  • Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 1993;90(21):10188–10192. doi:10.1073/pnas.90.21.101887901851
  • Gerosa F, Paganin C, Peritt D, et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-gamma and interleukin-10. J Exp Med. 1996;183(6):2559–2569. doi:10.1084/jem.183.6.25598676077
  • Ma X. TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes Infect. 2001;3(2):121–129.11251298
  • OyetakinWhite P, Tribout H, Baron E. Protective mechanisms of green tea polyphenols in skin. Oxid Med Cell Longev. 2012;2012:560682. doi:10.1155/2012/56068222792414
  • Cuevas A, Saavedra N, Salazar LA, Abdalla DSP. Modulation of immune function by polyphenols: possible contribution of epigenetic factors. Nutrients. 2013;5(7):2314. doi:10.3390/nu507231423812304
  • Djurovic S, Berge KE, Birkenes B, Braaten Ø, Retterstøl L. The effect of red wine on plasma leptin levels and vasoactive factors from adipose tissue: a randomized crossover trial. Alcohol Alcohol. 2007;42:525–528. doi:10.1093/alcalc/agl08317670801
  • Chen L-F, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science (80-). 2001;293(5535):1653–1657. doi:10.1126/science.1062374
  • O’Dea E, Hoffmann A. The regulatory logic of the NF-kB signaling system. Cold Spring Harb Perspect Biol. 2010;2(1):a000216–a000216.20182598
  • Ruiz PA, Haller D. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-κB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr. 2006;136(3):664–671. doi:10.1093/jn/136.3.66416484540
  • Singh S, Khar A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anticancer Agents Med Chem. 2006;6(3):259–270.16712454
  • McCain J. The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. Pharm Ther. 2013;38(2):96.
  • Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci. 2006;31(5):268–275. doi:10.1016/j.tibs.2006.03.00916603362
  • Lue H, Dewor M, Leng L, Bucala R, Bernhagen J. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal. 2011;23(1):135. doi:10.1016/j.cellsig.2010.08.01320807568
  • Arndt PG, Suzuki N, Avdi NJ, Malcolm KC, Worthen GS. Lipopolysaccharide-induced c-Jun NH 2 -terminal kinase activation in human neutrophils. J Biol Chem. 2004;279(12):10883–10891. doi:10.1074/jbc.M30990120014699155
  • Himes SR, Sester DP, Ravasi T, Cronau SL, Sasmono T, Hume DA. The JNK are important for development and survival of macrophages. J Immunol. 2006;176(4):2219–2228. doi:10.4049/jimmunol.176.4.221916455978
  • Kim S-J, Jeong H-J, Lee K-M, et al. Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem. 2007;18(9):587–596. doi:10.1016/j.jnutbio.2006.11.00117446059
  • Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, et al. Curcumin, a curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol. 2007;7(3):333–342. doi:10.1016/j.intimp.2006.11.00617276891
  • Pagliari LJ, Perlman H, Liu H, Pope RM. Macrophages require constitutive NF-kappaB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol. 2000;20(23):8855–8865. doi:10.1128/mcb.20.23.8855-8865.200011073986
  • Song D, Zhao J, Deng W, Liao Y, Hong X, Hou J. Tannic acid inhibits NLRP3 inflammasome-mediated IL-1β production via blocking NF-κB signaling in macrophages. Biochem Biophys Res Commun. 2018;503(4):3078–3085. doi:10.1016/j.bbrc.2018.08.09630126633
  • Jung J-Y, Mo H-C, Yang K-H, et al. Inhibition by epigallocatechin gallate of CoCl2-induced apoptosis in rat PC12 cells. Life Sci. 2007;80(15):1355–1363. doi:10.1016/j.lfs.2006.11.03317240404
  • Schroeter H, Spencer JP, Rice-Evans C, Williams RJ. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 2001;358(Pt 3):547–557. doi:10.1042/0264-6021:358054711535118
  • Shakibaei M, John T, Seifarth C, Mobasher A. Resveratrol inhibits IL-1beta-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann N Y Acad Sci. 2007;1095(1):554–563. doi:10.1196/annals.1397.06017404069
  • Park K-I, Kang S-R, Park H-S, et al. Regulation of proinflammatory mediators via NF-κB and p38 MAPK-dependent mechanisms in RAW 264.7 macrophages by polyphenol components isolated from Korea Lonicera japonica THUNB. Evid Based Complement Alternat Med. 2012;2012:1–10.
  • Rao KM. MAP kinase activation in macrophages. J Leukoc Biol. 2001;69(1):3–10.11200064
  • Acharyya S, Villalta SA, Bakkar N, et al. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest. 2007;117(4):889–901. doi:10.1172/JCI3055617380205
  • Wang K, Ping S, Huang S, et al. Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract from chinese propolis (poplar type). Evid Based Complement Alternat Med. 2013;2013:127672.23401705
  • Cianciulli A, Calvello R, Cavallo P, Dragone T, Carofiglio V, Panaro MA. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression. Toxicol Vitr. 2012;26(7):1122–1128. doi:10.1016/j.tiv.2012.06.015
  • Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression. Cytokine. 2015;76(2):206–213. doi:10.1016/j.cyto.2015.05.01626049169
  • Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–286.16101534
  • Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi:10.12703/P6-1324669294
  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–6440. doi:10.1002/jcp.26429
  • Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–667. doi:10.1161/CIRCRESAHA.115.30625626892964
  • Buttari B, Profumo E, Segoni L, et al. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxid Med Cell Longev. 2014;2014:257543. doi:10.1155/2014/25754324895526
  • Chu C, Liu L, Wang Y, et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction. J Tissue Eng Regen Med. 2018;12(6):1499–1507. doi:10.1002/term.268729704322
  • Gregory CD, Devitt A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology. 2004;113(1):1–14. doi:10.1111/j.1365-2567.2004.01959.x
  • Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front Immunol. 2017;8:909. doi:10.3389/fimmu.2017.0090928824635
  • Zhang Y, Kim H-J, Yamamoto S, Kang X, Ma X. Regulation of interleukin-10 gene expression in macrophages engulfing apoptotic cells. J Interferon Cytokine Res. 2010;30(3):113–122. doi:10.1089/jir.2010.000420187777
  • Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity. 2001;14(6):715–725.11420042
  • D’Archivio M, Santangelo C, Scazzocchio B, et al. Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci. 2008;9(3):213–228.19325744
  • Banerjee N, Talcott S, Safe S, Mertens-Talcott SU. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat. 2012;136(1):21–34. doi:10.1007/s10549-012-2224-022941571
  • Cerdá B, Espín JC, Parra S, Martínez P, Tomás-Barberán FA. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolized into bioavailable but poor antioxidant hydroxy-6H dibenzopyran-6-one derivatives by the colonic microflora in healthy humans. Eur J Nutr. 2004;43:205–220. doi:10.1007/s00394-004-0461-715309440
  • Hsieh T-C, Wu JM. Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin. Anticancer Res. 2009;29(10):4025–4032.19846946
  • Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-B-regulated gene products. Cancer Res. 2007;67(8):3853–3861. doi:10.1158/0008-5472.CAN-06-425717440100
  • Nishimuro H, Ohnishi H, Sato M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients. 2015;7(4):2345–2358. doi:10.3390/nu704234525849945
  • Choi Y-J, Kang J-S, Park JHY, Lee Y-J, Choi J-S, Kang Y-H. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide–treated human vascular endothelial cells. J Nutr. 2003;133(4):985–991. doi:10.1093/jn/133.4.98512672908
  • Karakurt S, Adali O. Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes. Anticancer Agents Med Chem. 2016;16(6):781–789.26555610