479
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Gold Nanoparticle-Based Therapy for Muscle Inflammation and Oxidative Stress

ORCID Icon, ORCID Icon, , &
Pages 3219-3234 | Published online: 31 May 2022

References

  • Paula MM, Petronilho F, Vuolo F, et al. Gold nanoparticles and/or N-acetylcysteine N -acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res A. 2015;103(10):3323–3330. doi:10.1002/jbm.a.35469
  • Haupenthal D, Dias FM, Zaccaron RP, et al. Effects of phonophoresis with Ibuprofen associated with gold nanoparticles in animal model of traumatic muscle injury. Eur J Pharm Sci. 2019;143:105120. doi:10.1016/j.ejps.2019.105120
  • Tartuce LP, Brandt FP, Dos Santos Pedroso G, et al. 2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Colloids Surf B. 2020;192:111012. doi:10.1016/j.colsurfb.2020.111012
  • Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra RJA. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1210–1220. doi:10.1080/21691401.2018.1449118
  • Lombardo D, Kiselev MA, Caccamo MTJ. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:1–26. doi:10.1155/2019/3702518
  • Bromma K, Chithrani DBJ. Advances in gold nanoparticle-based combined cancer therapy. Nanomaterials. 2020;10(9):1671.
  • Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic IJI. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19:1979.
  • Ojea-Jiménez I, Romero FM, Bastús NG, Puntes VJT. Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem. 2010;114(4):1800–1804.
  • Elbialy NS, Fathy MM, Khalil WMJ. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int J Pharm. 2015;490(1–2):190–199. doi:10.1016/j.ijpharm.2015.05.032
  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair SJB. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. 2014;2014. doi:10.1155/2014/498420
  • Della Vechia IC, Steiner BT, Freitas ML, et al. Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. J Nanoparticle Res. 2020;22:133.
  • Sani A, Cao C, Cui DJB. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991. doi:10.1016/j.bbrep.2021.100991
  • Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–668. doi:10.1021/nl052396o
  • Labouta HI, el-Khordagui LK, Kraus T, Schneider M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 2011;3(12):4989–4999. doi:10.1039/c1nr11109d
  • Raimondo TM, Mooney DJ. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc Natl Acad Sci U S A. 2018;115(42):10648–10653. doi:10.1073/pnas.1806908115
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782. doi:10.1039/b806051g
  • Menon S, Rajeshkumar S, Kumar VJR. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resor Effic Technol. 2017;3:516–527.
  • Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–632. doi:10.1177/1747493018778713
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi:10.1289/ehp.7339
  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–466. doi:10.1016/j.addr.2009.03.010
  • Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858. doi:10.1007/s11671-009-9334-6
  • Stiufiuc R, Iacovita C, Nicoara R, et al. One-step synthesis of PEGylated gold nanoparticles with tunable surface charge. J Nanomater. 2013;2013.
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16. doi:10.1146/annurev-bioeng-071811-150124
  • Adewale OB, Davids H, Cairncross L, Roux SJI. Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. Int J Toxicol. 2019;38(5):357–384. doi:10.1177/1091581819863130
  • Xie X, Liao J, Shao X, Li Q, Lin YJS. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep. 2017;7:1–9.
  • Xia Q, Huang J, Feng Q, et al. Size-and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14(6957).
  • Gupta R, Rai BJS. Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep. 2017;7:1–13.
  • Fornaguera C, Feiner-Gracia N, Dols-Perez A, García-Celma MJ, Solans CJP. Versatile methodology to encapsulate gold nanoparticles in plga nanoparticles obtained by nano-emulsion templating. Pharm Res. 2017;34(5):1093–1103. doi:10.1007/s11095-017-2119-1
  • Foroozandeh P, Aziz AAJ. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:1–12.
  • Spampinato V, Parracino MA, La Spina R, Rossi F, Ceccone GJF. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications. Front Chem. 2016;4:8. doi:10.3389/fchem.2016.00008
  • Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–1880. doi:10.1039/C1NR11188D
  • Cardoso Avila PE, Rangel Mendoza A, Pichardo Molina JL, et al. Biological response of HeLa cells to gold nanoparticles coated with organic molecules. Toxicol In Vitro. 2017;42:114–122. doi:10.1016/j.tiv.2017.04.013
  • Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 2020;11(4):923–936. doi:10.1039/C9SC06497D
  • Li T, Wang Y, Wang M, et al. Impact of albumin pre-coating on gold nanoparticles uptake at single-cell level. Nanomaterials. 2022;12:749.
  • Özçiçek İ, Ulaş Aytürk N, Aysit N. Histological changes in mice tissues induced by gold nanoparticles with different surface coatings and sizes. Exp Biol Med. 2022;5:73–87.
  • Bednarski M, Dudek M, Knutelska J, et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies. Pharmacol Rep. 2015;67(3):405–409. doi:10.1016/j.pharep.2014.10.019
  • Commoner B, Townsend J, Pake GEJ. Free radicals in biological materials. Nature. 1954;174(4432):689–691. doi:10.1038/174689a0
  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WOJ. Oxygen poisoning and x-irradiation: a mechanism in common. Science. 1954;119(3097):623–626. doi:10.1126/science.119.3097.623
  • Harman DJF. Free radical theory of aging: history. Free Radic Aging. 1992;275:1–10.
  • McCord JM, Fridovich IJJ. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–6055.
  • Murad FJA. Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel lecture). Biosci Rep. 1856–1868;1999(38).
  • Sies HJR. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619.
  • Lin J, Oh SH, Jones R, et al. The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells. J Biol Chem. 2014;289(26):18401–18412. doi:10.1074/jbc.M114.547877
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076. doi:10.1039/c8cs00457a
  • Sims CM, Hanna SK, Heller DA, et al. Redox-active nanomaterials for nanomedicine applications. Nanoscale. 2017;9(15226–15251).
  • Liu Y, Shi JJN. Antioxidative nanomaterials and biomedical applications. Nano Today. 2019;27:146–177.
  • Thirupathi A, Pinho RA, Ugbolue UC, He Y, Meng Y, Gu YJ. Effect of running exercise on oxidative stress biomarkers: a systematic review. Front Physiol. 2021;1789.
  • Nethi SK, Barui AK, Mukherjee S, Patra CRJA, signaling R. Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxid Redox Signal. 2019;30(5):786–809. doi:10.1089/ars.2017.7383
  • Tarin C, Carril M, Martin-Ventura JL, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:1–9.
  • Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106:17–32. doi:10.1016/j.pneurobio.2013.04.004
  • Jawaid P, Rehman MU, Zhao Q-L, et al. Small size gold nanoparticles enhance apoptosis-induced by cold atmospheric plasma via depletion of intracellular GSH and modification of oxidative stress. Cell Death Discov. 2020;6:1–12.
  • Ding F, Li Y, Liu J, et al. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells. Int J Nanomedicine. 2014;9:4317. doi:10.2147/IJN.S68685
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OCJ. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515. doi:10.1021/mp800051m
  • Coulter JA, Jain S, Butterworth KT, et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine. 2012;7:2673. doi:10.2147/IJN.S31751
  • Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol. 2019;234(14951–14965).
  • Tian F, Clift MJ, Casey A, et al. Investigating the role of shape on the biological impact of gold nanoparticles in vitro. Nanomedicine. 2015;10(17):2643–2657. doi:10.2217/nnm.15.103
  • Schaeublin NM, Braydich-Stolle LK, Schrand AM, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3(2):410–420. doi:10.1039/c0nr00478b
  • Durocher I, Noël C, Lavastre V, Girard DJI. Evaluation of the in vitro and in vivo proinflammatory activities of gold (+) and gold (−) nanoparticles. Inflamm Res. 2017;66(11):981–992. doi:10.1007/s00011-017-1078-7
  • Vreeken V, Siegler MA, van der Vlugt JI. Controlled interconversion of a dinuclear au species supported by a redox-active bridging PNP ligand facilitates ligand-to-gold electron transfer. Chemistry. 2017;23(23):5585–5594. doi:10.1002/chem.201700360
  • Sun C, Mirzadeh N, Guo SX, et al. Electrochemical interconversion of Au (I)–Au (I), Au (II)–Au (II), and Au (I)–Au (III) in binuclear complexes containing the carbanionic ligand C6F4PPh2. Inorg Chem. 2019;58(20):13999–14004. doi:10.1021/acs.inorgchem.9b01983
  • Li H, Ye X, Guo X, Geng Z, Wang G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J Hazard Mater. 2016;314:188–196. doi:10.1016/j.jhazmat.2016.04.043
  • Lopez-Sanchez JA, Dimitratos N, Hammond C, et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem. 2011;3(7):551–556. doi:10.1038/nchem.1066
  • Zhang XX, Liao C. Perspectives in medicinal chemistry: current progress in the development of metalloprotein inhibitors. Curr Top Med Chem. 2015;16(5):467–469. doi:10.2174/156802661605151022150043
  • Wen X, Wu J, Wang F, et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402–410. doi:10.1016/j.freeradbiomed.2013.07.013
  • Scherz‐Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar ZJTE. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26(7):1749–1760. doi:10.1038/sj.emboj.7601623
  • Eleftheriadou D, Kesidou D, Moura F, Felli E, Song WJS. Redox‐responsive nanobiomaterials‐based therapeutics for neurodegenerative diseases. Small. 2020;16(1907308). doi:10.1002/smll.201907308
  • Heckert EG, Karakoti AS, Seal S, Self WTJ. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29(18):2705–2709. doi:10.1016/j.biomaterials.2008.03.014
  • Aioub M, Panikkanvalappil SR, El-Sayed MAJ. Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano. 2017;11(579–586):579–586. doi:10.1021/acsnano.6b06651
  • Ma Y, Fu H, Zhang C, et al. Chiral antioxidant-based gold nanoclusters reprogram DNA epigenetic patterns. Sci Rep. 2016;6:1–12.
  • Mueller A, Bullich S, Barret O, et al. Tau PET imaging with 18F-PI-2620 in patients with Alzheimer disease and healthy controls: a first-in-humans study. J Nucl Med. 2020;61(6):911–919. doi:10.2967/jnumed.119.236224
  • Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun. 2020;11:1–11.
  • Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H(2)O(2)-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater. 2016;46:177–190. doi:10.1016/j.actbio.2016.09.010
  • Limbach LK, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol. 2007;41(11):4158–4163. doi:10.1021/es062629t
  • Acres RG, Feyer V, Tsud N, Carlino E, Prince KCJ. Mechanisms of aggregation of cysteine functionalized gold nanoparticles. J Phys Chem C. 2014;118:10481–10487.
  • Ge J, Liu K, Niu W, et al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. J Biomaterials. 2018;175:19–29.
  • Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–2076. doi:10.1002/smll.200900466
  • Mukherjee P, Bhattacharya R, Wang P, et al. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005;11(9):3530–3534. doi:10.1158/1078-0432.CCR-04-2482
  • Ishihara J, Ishihara A, Fukunaga K, et al. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat Commun. 2018;9:1–14.
  • Victor EG, Silveira PC, Possato JC, et al. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury. J Nanobiotechnology. 2012;10(1):11. doi:10.1186/1477-3155-10-11
  • Leite PEC, Pereira MR, Santos CAD, Campos APC, Esteves TM, Granjeiro JM. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death. Toxicol Vitro. 2015;29(5):819–827. doi:10.1016/j.tiv.2015.02.010
  • Patel S, Yin PT, Sugiyama H, Lee KB. Inducing stem cell myogenesis using nanoscript. ACS Nano. 2015;9(7):6909–6917.
  • Zortéa D, Silveira PCL, Souza PS, et al. Effects of phonophoresis and gold nanoparticles in experimental model of muscle overuse: role of oxidative stress. Ultrasound Med Biol. 2015;41(1):151–162.
  • Silveira PCL, Victor EG, Notoya FD, et al. Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model. Drug Deliv. 2016;23(3):926–932. doi:10.3109/10717544.2014.923063
  • Kim W, Jang CH, Kim GH. A myoblast-laden collagen bioink with fully aligned au nanowires for muscle-tissue regeneration. Nano Lett. 2019;19(12):8612–8620. doi:10.1021/acs.nanolett.9b03182
  • Da Rocha FR, Haupenthal DPD, Zaccaron RP, et al. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. J Drug Target. 2020;28(3):307–319. doi:10.1080/1061186X.2019.1652617
  • Haupenthal D, Possato JC, Zaccaron RP, et al. Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in Mdx mice. J Drug Target. 2020;28(1):46–54. doi:10.1080/1061186X.2019.1613408
  • Haupenthal DPD, Zortea D, Zaccaron RP, et al. Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury. Mater Sci Eng C Mater Biol Appl. 2020;110:13.
  • Raimondo TM, Mooney DJ. Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. Sci Adv. 2021;7(26):10. doi:10.1126/sciadv.abh3693
  • Thirupathi A, Sorato HR, Silva PRL, et al. Effect of taurine associated gold nanoparticles on oxidative stress in muscle of mice exposed to overuse model. An Acad Bras Cienc. 2021;93(2):12. doi:10.1590/0001-3765202120191450
  • Zhang YP, Le Friec A, Chen ML. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm. 2021;606:10. doi:10.1016/j.ijpharm.2021.120841
  • Järvinen TA, Järvinen TL, Kääriäinen M, et al. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007:21(317–331):317–331.
  • Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1173–R1187. doi:10.1152/ajpregu.00735.2009
  • Ko WC, Shieh JM, Wu WB. P38 MAPK and Nrf2 activation mediated naked gold nanoparticle induced heme oxygenase-1 expression in rat aortic vascular smooth muscle cells. Arch Med Res. 2020;51(5):388–396. doi:10.1016/j.arcmed.2020.04.015
  • Islam NU, Khan I, Rauf A, Muhammad N, Shahid M, Shah MR. Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of Euphorbia milii. BMC Complement Altern Med. 2015;15(1):160. doi:10.1186/s12906-015-0691-7
  • Sun PP, Lai CS, Hung CJ, et al. Subchronic oral toxicity evaluation of gold nanoparticles in male and female mice. Heliyon. 2021;7(3):e06577. doi:10.1016/j.heliyon.2021.e06577
  • Yu Z-M, Wan X-M, Xiao M, Zheng C, Zhou X-L. Puerarin induces Nrf2 as a cytoprotective mechanism to prevent cadmium-induced autophagy inhibition and NLRP3 inflammasome activation in AML12 hepatic cells. J Inorg Biochem. 2021;217:111389. doi:10.1016/j.jinorgbio.2021.111389
  • Silveira PC, Venâncio M, Souza PS, et al. Iontophoresis with gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds. Mater Sci Eng C Mater Biol Appl. 2014;44:380–385. doi:10.1016/j.msec.2014.08.045