233
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Dimethyl Fumarate as the Peripheral Blood Inflammatory Mediators Inhibitor in Prevention of Streptozotocin-Induced Neuroinflammation in Aged Rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 33-52 | Published online: 06 Jan 2022

References

  • Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;28:92–105. doi:10.1016/j.mad.2006.11.016
  • Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets. 2011;10(5):621–634. doi:10.2174/187152711796235014
  • Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12:1005–1015. doi:10.1038/nm1484
  • Stefanova NA, Ershov NI, Maksimowa KY, Muraleva NA, Tyumentsev MA, Kolosova NG. The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology. J Gerontol A Biol Sci Med Sci. 2019;74(1):33–43. doi:10.1093/gerona/gly198
  • Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA. Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis. 2010;7(1–3):38–41. doi:10.1159/000283480
  • Heneka MT, Carson MJ, Khoury EJ, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi:10.1016/S1474-4422(15)70016-5
  • Lehnardt S, Massilon L, Follett P, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A. 2003;100(14):8514–8519. doi:10.1073/pnas.1432609100
  • Walker DG, Dalsing-Hemandez JE, Campbell NA, Lue LF. Decreased expression of CD 200 and CD 200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol. 2009;215(1):5–19. doi:10.1016/j.expneurol.2008.09.003
  • Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–441. doi:10.1038/ng.801
  • Neilson LE, Quinn JF, Gray NE. Peripheral blood NRF2 expression as a biomarker in human health and disease. Antioxidants. 2021;10(1):28. doi:10.3390/antiox10010028
  • Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28–42. doi:10.1093/brain/aws322
  • Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;17(12):74. doi:10.1186/s12974-015-0291-y
  • Chen Y, Liang Z, Blanchard J, et al. A nontransgenic mouse (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol. 2013;47:711–725. doi:10.1007/s12035-012-8375-5
  • Ferretti MT, Cuello AC. Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res. 2011;8(2):164–174. doi:10.2174/156720511795255982
  • Kraska A, Santin MD, Dorieux O, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One. 2012;7(9):e46196. doi:10.1371/journal.pone.0046196
  • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9(1):25–34. doi:10.1038/nrneurol.2012.236
  • Salkovic-Petrisic M, Osmanovic-Barilar J, Brückner M, Hoyer S, Arendt T, Riederer P. Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: a long-term follow up study. J Neural Transm. 2011;118(5):765–772. doi:10.1007/s00702-011-0651-4
  • Mishra SK, Singh S, Shukla S, Shukla R. Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochem Int. 2018;113:56–68. doi:10.1016/j.neuint.2017.11.012
  • Kamat P, Kalani A, Rai S, et al. Streptozotocin intracerebroventricular induced neurotoxicity and brain insulin resistance therapeutic intervention for treatment of Sporadic Alzheimer’s Disease (sAD)-like pathology. Mol Neurobiol. 2016;53(7):4548–4562. doi:10.1007/s12035-015-9384-y
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity, uncovering the molecular mechanicms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038
  • Salminen A. Activation of immunosuppression network in the aging process. Ageing Res Rev. 2020;57:100998. doi:10.1016/j.arr.2019.100998
  • Jones CI. Platelet function and ageing. Mamm Genome. 2016;27(7–8):358–366. doi:10.1007/s00335-016-9629-8
  • Kniewallner KM, Foidl BM, Humpel C. Platelets isolated from an Alzheimer’s mouse damage healthy cortical vessels and cause inflammation in an organotypic ex vivo brain slice model. Sci Rep. 2018;8(1):15483. doi:10.1038/s41598-018-33768-2
  • Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Platelets, lymphocytes and erythrocytes from Alzheimer’s disease patients: the quest for blood cell-based biomarkers. Folia Neuropathol. 2018;56(1):14–20. doi:10.5114/fn.2018.74655
  • Canobbio I, Abubaker AA, Viscante C, Torti M, Paula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease. Front Cell Neurosci. 2015;9:65. doi:10.3389/fncel.2015.00065
  • Stevenson A, Lopez D, Khoo P, Kalaria RN, Mukaetova-Ladinska EB. Exploring erythrocytes as blood biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2017;60:845–857. doi:10.3233/JAD-170363
  • Gonzalez H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014;11(1):201. doi:10.1186/s12974-014-0201-8
  • Mietelska-Porowska A, Wojda U. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: potential pools of new biomarkers. J Immunol Res. 2017;2017:4626540. doi:10.1155/2017/4626540
  • Richartz-Salzburger E, Batra A, Stransky E, et al. Altered lymphocyte distribution in Alzheimer’s disease. J Psychiatr Res. 2007;41(1–2):174–178. doi:10.1016/j.jpsychires.2006.01.010
  • Saidu NEB, Kavian N, Leroy K, Jakob C, Nicco C, Batteux F. Dimethyl fumarate, a two-edged drug: current status and future directions. Med Res Rev. 2019;39(5):1923–1952. doi:10.1002/med.21567
  • Diebold M, Sievers C, Bantug G, et al. T Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis. J Autoimmun. 2018;86:39–50. doi:10.1016/j.jaut.2017.09.009
  • Carlström KE, Ewing E, Granquist M, et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nature Commun. 2019;10:3081. doi:10.1038/s41467-019-11139-3
  • Tahvili S, Zandich B, Amirghofran Z. The effect of dimethyl fumarate on gene expression and the level of cytokines related to different T helper cell subsets in peripheral blood mononuclear cells of patients with psoriasis. Int J Dermatol. 2015;54(7):e254–e260. doi:10.1111/ijd.12834
  • Majkutewicz I, Kurowska E, Podlacha M, et al. Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats. Behav Brain Res. 2016;308:24–37. doi:10.1016/j.bbr.2016.04.012
  • Majkutewicz I, Kurowska E, Podlacha M, et al. Age-dependent effects of dimethyl fumarate on cognitive and neuropathological features in the streptozotocin-induced rat model of Alzheimer’s disease. Brain Res. 2018;1686:19–33. doi:10.1016/j.brainres.2018.02.016
  • Spencer SR, Wilczak CA, Talalay P. Induction of glutathione transferases and NAD(P)H: quinonereductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res. 1990;50(24):7871–7875.
  • Sasaki A, Koike N, Murakami T, Suzuki K. Dimethyl fumarate ameliorates cisplatin-induced renal tubulointerstitial lesions. J Toxicol Pathol. 2019;39:79–89. doi:10.1293/tox.2018-0049
  • Dhaliwal N, Dhaliwal J, Singh A, Chopra K. Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf-2 signaling pathway in rats. Inflammopharmacology. 2021;29:537–547. doi:10.1007/s10787-020-00785-5
  • Bloch K, Gil-Ad I, Vanichkin A, et al. Intracerebroventricular streptozotocin induces obesity and dementia in Luis rats. J Alzheimers Dis. 2017;60:121–136. doi:10.3233/JAD-161289
  • Wrona D, Listowska M, Kubera M, et al. Effects of chronic desipramine pretreatment on open field-induced suppression of blood natural killer cell activity and cytokine response depend on the rat’s behavioral characteristics. J Neuroimmunol. 2014;268:13–24. doi:10.1016/j.jneuroim.2013.10.001
  • Listowska M, Glac W, Grembecka B, Grzybowska M, Wrona D. Change in blood CD4+T and CD8+T lymphocytes in stressed rats pretreated chronically with desipramine are more pronounced after chronic open field stress challenge. J Neuroimmunol. 2015;282:54–62. doi:10.1016/j.jneuroim.2015.02.015
  • Glac W, Dunacka J, Grembecka B, Światek G, Majkutewicz I, Wrona D. Prolonged peripheral immunosuppressive responses as consequence of random amphetamine treatment, amphetamine withdrawal and subsequent amphetamine challenges in rats. J Neuroimmune Pharmacol. 2021. doi:10.1007/s11481-021-09988-1
  • Grembecka B, Glac W, Listowska M, et al. Subthalamic deep brain stimulation affects plasma corticosterone concentration and peripheral immunity changes in rat model of Parkinson’s disease. J Neuroimmune Pharmacol. 2021;16(2):454–469. doi:10.1007/s11481-020-09934-7
  • Ulrich-LAI YM, Herman JP. Neural regulation of endocrine and autonomic stress response. Nat Rev Neurosci. 2009;10:397–409. doi:10.1038/nrn2647
  • Montes D, Fraussen J, Wijmeersch B, Hupperts R, Somers V. Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients. Sci Rep. 2018;8:8194. doi:10.1038/s41598-018-26519-w
  • Longbrake EE, Cantoni C, Chahin S, Cignarella F, Cross AH, Piccio L. Dimethyl fumarate induces changes in B- and T-lymphocyte function independent of the effects on absolute lymphocyte count. Mult Scler. 2018;24(6):728–738. doi:10.1177/1352458517707069
  • Vego H, Sand KL, Hoglund RA, et al. Monomethyl fumarate augments NK cell lysis of tumor cells through degranulation and the upregulation of NKp46 and CD107a. Cell Mol Immunol. 2016;13(1):57–64. doi:10.1038/cmi.2014.114
  • Smith MD, Calabresi P, Bhargava P. Dimethyl fumarate treatment alters NK cell function in multiple sclerosis. Eur J Immunol. 2018;48(2):380–383. doi:10.1002/eji.201747277
  • Crome SQ, Lang PA, Lang KS, Ohashi PS. Natural killer cells regulate diverse T cell responses. Trends Immunol. 2013;34(7):342–349. doi:10.1016/j.it.2013.03.002
  • Linker RA, Lee DH, Ryan S, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134(3):678–692. doi:10.1093/brain/awq386
  • Safdar A, deBeer J, Tarnopolsky MA. Dysfunctional Nrf-2-Keap1 redox signaling in skeletal muscle of the sedentary old. Free Radic Biol Med. 2010;49:1487–1493. doi:10.1016/j.freeradbiomed.2010.08.010
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases, physiology and pathology. Physiol Rev. 2007;87:245–313. doi:10.1152/physrev.00044.2005
  • Ghadiri M, Rezk A, Li R, et al. Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurol Neuroimmunol Neuroinflamm. 2017;4:e340. doi:10.1212/NXI.0000000000000340
  • Sainz de la Maza S, Medina S, Villarrubia N, et al. Factors associated with dimethyl fumarate-induced lymphopenia. J Neurol Sci. 2019;398(4):4–8. doi:10.1016/j.jns.2019.01.007
  • Spencer CM, Crabtree-Hartman EC, Lehman-Horn K, Cree BA, Zamvil SS. Reduction of CD8+ T lymphocyte in multiple sclerosis patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e76. doi:10.1212/NXI.0000000000000076
  • Berkovich R, Weiner IP. Effects of dimethyl fumarate (Teefidera) on lymphocyte subsets. Mult Scler Relat Disord. 2015;4(4):339–341. doi:10.1016/j.msard.2015.06.002
  • Chaves C, Ganguly R, Ceresia C, Camac A. Lymphocyte subtypes in relapsing-remitting multiple sclerosis patients treated with dimethyl fumarate. Mult Scler J Exp Transl Clin. 2017;3(2):2055217317702933. doi:10.1177/2055217317702933
  • Longbrake EE, Ramsbottom MJ, Cantoni C, Ghezzi L, Cross AH, Piccio L. Dimethyl fumarate selectively reduces memory T cells in multiple sclerosis patients. Mult Scler. 2016;22(8):1061–1070. doi:10.1177/1352458515608961
  • Medina S, Villarrubia N, Sainz de la Maza S, et al. Optimal response to dimethyl fumarate associates in MS with a shift from an inflammatory to a tolerogenic blood cell profile. Mult Scler. 2018;24(10):1317–1327. doi:10.1177/1352458517717088
  • Najjar E, Staun-Ram E, Volkowich A, Miller A. Dimethyl fumarate promotes B cell-mediated anti-inflammatory cytokine profile in B and T cells, and inhibits immune cell migration in patients with MS. J Neuroimmunol. 2020;343:577230. doi:10.1016/j.jneuroim.2020.577230
  • Albrecht P, Bouchachia I, Goebels N, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation. 2012;9(1):163. doi:10.1186/1742-2094-9-163
  • Borger P, Postma DS, Vellenga E, Kaufman HF. Regulation of asthma-related T-cell cytokines by the cyclic AMP-dependent signaling pathway. Clin Exp Allergy. 2000;30:920–926. doi:10.1046/j.1365-2222.2000.00794.x
  • Fiedler SE, Kerns AR, Tsang C, Tsang V, Bourdette D, Salinthone S. Dimethyl fumarate activates the prostaglandin EP2 receptor and stimulates cAMP signaling in human peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2016;475:19–24. doi:10.1016/j.bbrc.2016.05.021
  • Zidek Z. Adenosine-cyclic AMP pathway and cytokine expression. Eur Cytokine Netw. 1999;10:319–328.
  • Nakagawa K, Kiko T, Kuriwada S, Miyazawa T, Kimura F, Miyazawa T. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality. Biosci Biotechnol Biochem. 2011;75(10):2030–2033. doi:10.1271/bbb.110318
  • Krishnamoorthy S, Pace B, Gupta D, et al. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight. 2017;2(20):e96409. doi:10.1172/jci.insight.96409
  • Macari ER, Lowrey CH. Induction of human fetal hemoglobin via NRF-2 antioxidant response signaling pathway. Blood. 2011;117(22):5987–5997. doi:10.1182/blood-2010-10-314096
  • Suidan GL, Singh PK, Patel-Hett S, et al. Abnormal clotting of the intrinsic/contact pathway in Alzheimer disease patients is related to cognitive ability. Blood Adv. 2018;2(9):954–963. doi:10.1182/bloodadvances.2018017798
  • Yadav SK, Soin D, Ito K, Dhib-Jalbut S. Insight into the mechanism of action of dimethyl fumarate in multiple sclerosis. J Mol Med. 2019;97(4):463–472. doi:10.1007/s00109-019-01761-5
  • Kunze R, Urrutia A, Hoffmann A, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol. 2015;266:99–111. doi:10.1016/j.expneurol.2015.02.022
  • Lim JL, van der Pol SM, Di Dio F, et al. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier. Microvasc Res. 2016;105:61–69. doi:10.1016/j.mvr.2015.12.003