214
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Relationship Between Mild Cognitive Impairment and Anti-Inflammatory/Pro-Inflammatory Nutrients in the Elderly in Northern China: A Bayesian Kernel Machine Regression Approach

, , , , , , & show all
Pages 325-339 | Published online: 14 Jan 2022

References

  • GBD. 2016 Neurology Collaborators, Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–480. doi:10.1016/S1474-4422(18)30499-X
  • Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study.Lancet Public Health. 2020;5:e661–e671. doi:10.1016/S2468-2667(20)30185-7
  • Davis M, T. O, Johnson S, et al. Estimating Alzheimer’s disease progression rates from normal cognition through mild cognitive impairment and stages of dementia. Curr Alzheimer Res. 2018;15(8):777–788. doi:10.2174/1567205015666180119092427
  • Baiano C, Barone P, Trojano L, et al. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease. A Meta-Analysis Mov Disord. 2020;35:45–54. doi:10.1002/mds.27902
  • Liu-Seifert H, Schumi J, Miao X, et al. Disease modification in Alzheimer’s disease: current thinking. Ther Innov Regul Sci. 2020;54:396–403. doi:10.1007/s43441-019-00068-4
  • Flanagan E, Lamport D, Brennan L, et al. Nutrition and the ageing brain: moving towards clinical applications. Ageing Res Rev. 2020;62:101079. doi:10.1016/j.arr.2020.101079
  • An P, Zhou X, Du Y, et al. Association of neutrophil-lymphocyte ratio with mild cognitive impairment in elderly Chinese Adults: a Case-control Study. Curr Alzheimer Res. 2019;16:1309–1315. doi:10.2174/1567205017666200103110521
  • Shen X-N, Niu L-D, Wang Y-J, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598. doi:10.1136/jnnp-2018-319148
  • Ivanova N, Liu Q, Agca C, et al. White matter inflammation and cognitive function in a co-morbid metabolic syndrome and prodromal Alzheimer’s disease rat model. J Neuroinflammation. 2020;17(1):29. doi:10.1186/s12974-020-1698-7
  • Dionysopoulou S, Charmandari E, Bargiota A, et al. The role of hypothalamic inflammation in diet-induced obesity and its association with cognitive and mood disorders. Nutrients. 2021;13:498. doi:10.3390/nu13020498
  • Kheirouri S, Alizadeh M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol Rev. 2019;41:109–120. doi:10.1093/epirev/mxz005
  • Businaro R, Corsi M, Asprino R, et al. Modulation of inflammation as a way of delaying Alzheimer’s disease progression: the diet’s role. Curr Alzheimer Res. 2018;15:363–380. doi:10.2174/1567205014666170829100100
  • Kotsakis Georgios A, Chrepa V, Shivappa N, et al. Diet-borne systemic inflammation is associated with prevalent tooth loss. Clin Nutr. 2018;37:1306–1312. doi:10.1016/j.clnu.2017.06.001
  • García-Calzón S, Zalba G, Ruiz-Canela M, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102:897–904. doi:10.3945/ajcn.115.116863
  • Bobb Jennifer F, Valeri L, Claus Henn B, et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16:493–508. doi:10.1093/biostatistics/kxu058
  • Valeri L, Mazumdar Maitreyi M, Bobb Jennifer F, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from rural Bangladesh. Environ Health Perspect. 2017;125:067015. doi:10.1289/EHP614
  • Julayanont P, Brousseau M, Chertkow H, et al. Montreal cognitive assessment memory index score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. J Am Geriatr Soc. 2014;62:679–684. doi:10.1111/jgs.12742
  • Lu J, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol. 2011;24(4):184–190. doi:10.1177/0891988711422528
  • Petersen RC. Mild Cognitive Impairment. Continuum. 2016;22:404–418. doi:10.1212/CON.0000000000000313
  • Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on mild cognitive impairment. J Intern Med. 2004;256:240–246. doi:10.1111/j.1365-2796.2004.01380.x
  • Shivappa N, Steck Susan E, Hurley Thomas G, et al. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–1696. doi:10.1017/S1368980013002115
  • Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–5528. doi:10.1002/sim.3148
  • Chen D, Liu Z, Liu W, et al. Predicting postoperative peritoneal metastasis in gastric cancer with serosal invasion using a collagen nomogram. Nat Commun. 2021;12(1):179. doi:10.1038/s41467-020-20429-0
  • Zhao N, Smargiassi A, Hudson M, et al. Investigating associations between anti-nuclear antibody positivity and combined long-term exposures to NO2, O3, and PM2.5 using a Bayesian kernel machine regression approach. Environ Int. 2020;136:105472. doi:10.1016/j.envint.2020.105472
  • Kupsco A, Kioumourtzoglou M-A, Just Allan C, et al. Prenatal metal concentrations and childhood cardiometabolic risk using Bayesian Kernel machine regression to assess mixture and interaction effects. Epidemiology. 2019;30(2):263–273. doi:10.1097/EDE.0000000000000962
  • Pitsillou E, Bresnehan Sarah M, Kagarakis Evan A, et al. The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol Biol Rep. 2020;47:753–770. doi:10.1007/s11033-019-05129-3
  • Cernackova A, Durackova Z, Trebaticka J, et al. Neuroinflammation and depressive disorder: the role of the hypothalamus. J Clin Neurosci. 2020;75:5–10. doi:10.1016/j.jocn.2020.03.005
  • Dey A, Hankey PA. Insights into macrophage heterogeneity and cytokine-induced neuroinflammation in major depressive disorder. Pharmaceuticals. 2018;11. doi:10.3390/ph11030064
  • Kim Y-K, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res. 2017;329:6–11. doi:10.1016/j.bbr.2017.04.020
  • Steiner Genevieve Z, Bensoussan A, Liu J, et al. Study protocol for a randomised, double-blind, placebo-controlled 12-week pilot Phase II trial of Sailuotong (SLT) for cognitive function in older adults with mild cognitive impairment. Trials. 2018;19:522. doi:10.1186/s13063-018-2912-0
  • Tarkowski E, Andreasen N, Tarkowski A, et al. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1200–1205. doi:10.1136/jnnp.74.9.1200
  • Voigt Robin M, Raeisi S, Yang J, et al. Systemic brain derived neurotrophic factor but not intestinal barrier integrity is associated with cognitive decline and incident Alzheimer’s disease. PLoS One. 2021;16:e0240342. doi:10.1371/journal.pone.0240342
  • Gamage R, Wagnon I, Rossetti I, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577912. doi:10.3389/fncel.2020.577912
  • Skoczek-Rubińska A, Muzsik-Kazimierska A, Chmurzynska A, et al. Inflammatory potential of diet is associated with biomarkers levels of inflammation and cognitive function among postmenopausal women. Nutrients. 2021;13:2323. doi:10.3390/nu13072323
  • McGrattan Andrea M, McGuinness B, McKinley, MC, et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep. 2019;8:53–65. doi:10.1007/s13668-019-0271-4
  • Arnoriaga-Rodríguez M. Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Rev Endocr Metab Disord. 2019;20:473–480. doi:10.1007/s11154-019-09537-5
  • Kathleen M, Lily S, Vasso A. The effects of vitamin B in depression. Curr Med Chem. 2016;23:4317–4337. doi:10.2174/0929867323666160920110810
  • Mikkelsen K, Stojanovska L, Tangalakis K, et al. Cognitive decline: a vitamin B perspective. Maturitas. 2016;93:108–113. doi:10.1016/j.maturitas.2016.08.001
  • Perła-Kaján J, Włoczkowska O, Zioła-Frankowska A, et al. Paraoxonase 1, B vitamins supplementation, and mild cognitive impairment. J Alzheimers Dis. 2021;81:1211–1229. doi:10.3233/JAD-210137
  • Sheng L-T, Jiang Y-W, Pan X-F, et al. Association between dietary intakes of b vitamins in midlife and cognitive impairment in late-life: the Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci. 2020;75:: 1222–1227. doi:10.1093/gerona/glz125
  • Cardoso C, Afonso C, Bandarra Narcisa M. Dietary DHA and health: cognitive function ageing. Nutr Res Rev. 2016;29:281–294. doi:10.1017/S0954422416000184
  • Moretti R, Peinkhofer CB. Vitamins and fatty acids: what do they share with small vessel disease-related dementia? Int J Mol Sci. 2019;20. doi:10.3390/ijms20225797
  • Moore K, Hughes Catherine F, Ward M, et al. Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc. 2018;77:152–163. doi:10.1017/S0029665117004177
  • Köbe T, V Witte A, Schnelle A, et al. Vitamin B-12 concentration, memory performance, and hippocampal structure in patients with mild cognitive impairment. Am J Clin Nutr. 2016;103:1045–1054. doi:10.3945/ajcn.115.116970
  • Spauwen Peggy JJ, Murphy Rachel A, Jónsson Pálmi V, et al. Associations of fat and muscle tissue with cognitive status in older adults: the AGES-Reykjavik Study. Age Ageing. 2017;46:250–257. doi:10.1093/ageing/afw219
  • Brandt J, Buchholz A, Henry-Barron H-B, et al. Preliminary report on the feasibility and efficacy of the modified Atkins diet for treatment of mild cognitive impairment and early Alzheimer’s disease. J Alzheimers Dis. 2019;68:969–981. doi:10.3233/JAD-180995
  • Cunnane SC, Plourde M, Pifferi F, Bégin M, Féart C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res. 2009;48(5):239–256. doi:10.1016/j.plipres.2009.04.001
  • Solfrizzi V, A Dintrono, Colacicco AM, et al. Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp Gerontol. 2005;40:257–270. doi:10.1016/j.exger.2005.01.001
  • Solfrizzi V, Frisardi V, Capurso C, et al. Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev. 2010;9:184–199. doi:10.1016/j.arr.2009.07.005
  • Ooi CP, Loke SC, Yassin Z, et al. Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev. 2011:CD007220. doi:10.1002/14651858.CD007220.pub2
  • Perła-Kaján Joanna,Włoczkowska Olga,Zioła-Frankowska Anetta et al. Paraoxonase 1, B Vitamins Supplementation, and Mild Cognitive Impairment. J Alzheimers Dis. 2021;81:1211–1229. doi:10.3233/JAD-210137
  • Sheng Li-Ting,Jiang Yi-Wen,Pan Xiong-Fei et al. Association Between Dietary Intakes of B Vitamins in Midlife and Cognitive Impairment in Late-Life: The Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci. 2020;75:1222–1227. doi:10.1093/gerona/glz125
  • Cardoso Carlos,Afonso Cláudia,Bandarra Narcisa M,Dietary DHA and health: cognitive function ageing.. Nutr Res Rev. 2016;29:281–294. doi:10.1017/S0954422416000184
  • Moretti Rita,Peinkhofer Costanza,B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia?.. Int J Mol Sci. 2019;20:undefined. doi:10.3390/ijms20225797
  • Moore Katie,Hughes Catherine F,Ward Mary et al. Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc. 2018;77:152–163. doi:10.1017/S0029665117004177
  • Köbe Theresa,Witte A Veronica,Schnelle Ariane et al. Vitamin B-12 concentration, memory performance, and hippocampal structure in patients with mild cognitive impairment. Am J Clin Nutr. 2016;103:1045–54. doi:10.3945/ajcn.115.116970
  • Spauwen Peggy J J,Murphy Rachel A,Jónsson Pálmi V et al. Associations of fat and muscle tissue with cognitive status in older adults: the AGES-Reykjavik Study. Age Ageing. 2017;46:250–257. doi:10.1093/ageing/afw219
  • Brandt Jason,Buchholz Alison,Henry-Barron Bobbie et al. Preliminary Report on the Feasibility and Efficacy of the Modified Atkins Diet for Treatment of Mild Cognitive Impairment and Early Alzheimer’s Disease. J Alzheimers Dis. 2019;68:969–981. doi:10.3233/JAD-180995
  • Cunnane SC, Plourde M, Pifferi F, Bégin M, Féart C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer's disease. J Prog Lipid Res. 2009;48(5):239–56. doi:10.1016/j.plipres.2009.04.001
  • Solfrizzi Vincenzo,D'Introno Alessia,Colacicco Anna M et al. Dietary fatty acids intake: possible role in cognitive decline and dementia. Exp Gerontol. 2005;40:257–70. doi:10.1016/j.exger.2005.01.001
  • Solfrizzi Vincenzo,Frisardi Vincenza,Capurso Cristiano et al. Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev. 2010;9:184–99. doi:10.1016/j.arr.2009.07.005
  • Ooi Cheow Peng,Loke Seng Cheong,Yassin Zaitun et al. Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev. 2011;undefined:CD007220. doi:10.1002/14651858.CD007220.pub2