413
Views
13
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Melatonin Suppresses NLRP3 Inflammasome Activation via TLR4/NF-κB and P2X7R Signaling in High-Fat Diet-Induced Murine NASH Model

, &
Pages 3235-3258 | Published online: 31 May 2022

References

  • Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C. Definition of metabolic syndrome: report of the national heart, lung, and serum institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–438. doi:10.1161/01.CIR.0000111245.75752.C6
  • Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology. 2003;37(5):1202–1219. doi:10.1053/jhep.2003.50193
  • Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. 2016;20(2):205–214. doi:10.1016/j.cld.2015.10.001
  • Negro F. Natural history of NASH and HCC. Liver Int. 2020;40(S1):72–76. doi:10.1111/liv.14362
  • Lazo M, Hernaez R, Eberhardt MS, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988–1994. Am J Epidemiol. 2013;178(1):38–45. doi:10.1093/aje/kws448
  • Fan JG. Impact of non-alcoholic fatty liver disease on accelerated metabolic complications. J Dig Dis. 2008;9(2):63–67. doi:10.1111/j.1751-2980.2008.00323.x
  • Boppidi H, Daram SR. Nonalcoholic fatty liver disease: hepatic manifestation of obesity and the metabolic syndrome. Postgrad Med. 2008;120(2):1–3. doi:10.3810/pgm.2008.07.1800
  • Satapati S, Kucejova B, Shawn C, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2016;125:4447–4462. doi:10.1172/JCI82204
  • Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–947. doi:10.1016/j.jhep.2018.06.008
  • Chen Z, Tian R, She Z, Cai J, Li H. Corrigendum to “Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease”. Free Radic Biol Med. 2020;152:116–141. doi:10.1016/j.freeradbiomed.2020.06.011
  • Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. doi:10.1016/j.metabol.2015.12.012
  • Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24(27):2974–2983. doi:10.3748/wjg.v24.i27.2974
  • Softic S, Cohen DE, Kahn CR. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci. 2016;61(5):1282–1293. doi:10.1007/s10620-016-4054-0
  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–247. doi:10.1038/ni.1703
  • Bawa M, Saraswat VA. Gut-liver axis: role of inflammasomes. J Clin Exp Hepatol. 2013;3(2):141–149. doi:10.1016/j.jceh.2013.03.225
  • Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–36622. doi:10.1074/jbc.M112.407130
  • Weber K, Schilling JD. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem. 2014;289(13):9158–9171. doi:10.1074/jbc.M113.531202
  • Franceschini A, Capece M, Chiozzi P, et al. The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J. 2015;29(6):2450–2461. doi:10.1096/fj.14-268714
  • Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54(1):133–144. doi:10.1002/hep.24341
  • Wree A, McGeough MD, Peña CA, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med. 2014;92(10):1069–1082. doi:10.1007/s00109-014-1170-1
  • Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66(5):1037–1046. doi:10.1016/j.jhep.2017.01.022
  • Thomas H. NAFLD: a critical role for the NLRP3 inflammasome in NASH. Nat Rev Gastroenterol Hepatol. 2017;14(4):197. doi:10.1038/nrgastro.2017.21
  • Zhao D, Yu Y, Shen Y, et al. Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (Lausanne). 2019;10:1–16. doi:10.3389/fendo.2019.00249
  • Tan D-X, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev. 2010;85(3):607–623. doi:10.1111/j.1469-185X.2009.00118.x
  • Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: what’s new? A review. J Pineal Res. 2018;65(1):1–22. doi:10.1111/jpi.12490
  • Sun H, Wang X, Chen J, et al. Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids Health Dis. 2016;15(1):1–8. doi:10.1186/s12944-016-0370-9
  • Hatzis G, Ziakas P, Kavantzas N, et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol. 2013;5(4):160–169. doi:10.4254/wjh.v5.i4.160
  • Tahan V, Atug O, Akin H, et al. Melatonin ameliorates methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis in rats. J Pineal Res. 2009;46(4):401–407. doi:10.1111/j.1600-079X.2009.00676.x
  • Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007;165(2):106–116. doi:10.1016/j.cbi.2006.11.004
  • Bort A, Sánchez BG, Spínola E, Mateos-Gómez PA, Rodríguez-Henche N, Díaz-Laviada I. The red pepper’s spicy ingredient capsaicin activates AMPK in HepG2 cells through CaMKKβ. PLoS One. 2019;14(1):1–15. doi:10.1371/journal.pone.0211420
  • Jiang LH, Mackenzie AB, North RA, Surprenant A. Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol. 2000;58(1):82–88. doi:10.1124/mol.58.1.82
  • Pandey NR, Renwick J, Rabaa S, et al. An induction in hepatic HDL secretion associated with reduced ATPase expression. Am J Pathol. 2009;175(4):1777–1787. doi:10.2353/ajpath.2009.090082
  • Dobashi H, Seki S, Habu Y, et al. Activation of mouse liver natural killer cells and NK1.1+ T cells by bacterial superantigen-primed Kupffer cells. Hepatology. 1999;30(2):430–436. doi:10.1002/hep.510300209
  • Jackson M, Taylor H, Jones E, Forrester LM. Mouse Cell Culture. Methods Mol Biol. 2010;633(1):29–56. doi:10.1007/978-1-59745-019-5
  • Aly FZ, Kleiner DE. Update on fatty liver disease and steatohepatitis. Adv Anat Pathol. 2011;18(4):294–300. doi:10.1097/PAP.0b013e318220f59b
  • Lanthier N. Targeting Kupffer cells in non-alcoholic fatty liver disease/ non-alcoholic steatohepatitis: why and how? World J Hepatol. 2015;7(19):2184–2188. doi:10.4254/wjh.v7.i19.2184
  • Wan X, Xu C, Yu C, Li Y. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol. 2016;2016:1–7. doi:10.1155/2016/6489012
  • Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat Med. 2018;24(7):908-922. doi:10.1038/s41591-018-0104-9
  • Rogero MM, Calder PC. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018;10(4):1–19. doi:10.3390/nu10040432
  • Shi H, Yin H, Flier JS, et al. TLR4 links innate immunity and fatty acid – induced insulin resistance. J Clin Invest. 2006;116(11):3015–3025. doi:10.1172/JCI28898
  • Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signalling. 2019;15(4):477–489. doi:10.1007/s11302-019-09680-3
  • Rossato M, Di Vincenzo A, Pagano C, El Hadi H, Vettor R. The P2X7 receptor and NLRP3 axis in non-alcoholic fatty liver disease: a brief review. Cells. 2020;9(4):1–12. doi:10.3390/cells9041047
  • Chatterjee S, Das S. P2X7 receptor as a key player in oxidative stress-driven cell fate in nonalcoholic steatohepatitis. Oxid Med Cell Longev. 2015;2015:1–7. doi:10.1155/2015/172493
  • Masarone M, Rosato V, Dallio M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. doi:10.1155/2018/9547613
  • Besse-Patin A, Estall JL. An intimate relationship between ros and insulin signalling: implications for antioxidant treatment of fatty liver disease. Int J Cell Biol. 2014;2014:519153. doi:10.1155/2014/519153
  • Delli Bovi AP, Marciano F, Mandato C, et al. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front Med. 2021;8:595371. doi:10.3389/fmed.2021.595371
  • Wang D, Wang H, Gao H, et al. P2X7 receptor mediates NLRP3 inflammasome activation in depression and diabetes. Cell Biosci. 2020;10(1):1–9. doi:10.1186/s13578-020-00388-1
  • Marchesini G, Day CP, Dufour JF, et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–1402. doi:10.1016/j.jhep.2015.11.004
  • Zhang JJ, Meng X, Li Y, et al. Effects of melatonin on liver injuries and diseases. Int J Mol Sci. 2017;18(4):1–27. doi:10.3390/ijms18040673
  • García JA, Volt H, Venegas C, et al. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-a and blocks the septic response in mice. FASEB J. 2015;29(9):3863–3875. doi:10.1096/fj.15-273656
  • Farias da de SMT, Paixao da RI, MM Cruz, et al. Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells. 2019;8(9). doi:10.3390/cells8091041
  • Karolczak K, Watala C. The mystery behind the pineal gland: melatonin affects the metabolism of cholesterol. Oxid Med Cell Longev. 2019;2019:4531865. doi:10.1155/2019/4531865
  • Yu GM, Kubota H, Okita M, Maeda T. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLoS One. 2017;12(5):1–17. doi:10.1371/journal.pone.0178525
  • Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res. 2021;44(1):16–35. doi:10.1007/s12272-021-01307-9
  • Xia MZ, Liang YL, Wang H, et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res. 2012;53(4):325–334. doi:10.1111/j.1600-079X.2012.01002.x
  • Chuffa GGA, Fioruci-Fontanelli BA, Mendes LO, et al. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer. 2015;15(1):1–13. doi:10.1186/s12885-015-1032-4
  • Bonomini F, Dos Santos M, Veronese FV, Rezzani R. NLRP3 inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. Int J Mol Sci. 2019;20(14):14. doi:10.3390/ijms20143466
  • Liu Y, Li C, Yin H, Zhang X, Li Y. NLRP3 inflammasome: a potential alternative therapy target for atherosclerosis. Evidence-Based Complement Altern Med. 2020;2020. doi:10.1155/2020/1561342.
  • Osier N, McGreevy E, Pham L, et al. Melatonin as a Therapy for Traumatic Brain Injury: A Review of Published Evidence. Int J Mol Sci.2018;19(5):1539. doi:10.3390/ijms19051539
  • Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134(6):1655–1669. doi:10.1053/j.gastro.2008.03.003
  • Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in liver diseases. J Clin Exp Hepatol. 2017;7(4):367–372. doi:10.1016/j.jceh.2017.09.004
  • Roeb E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018;68–69:463–473. doi:10.1016/j.matbio.2017.12.012
  • Hu W, Ma Z, Jiang S, et al. Melatonin: the dawning of a treatment for fibrosis? J Pineal Res. 2016;60(2):121–131. doi:10.1111/jpi.12302
  • Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01728.
  • Kong F, Ye B, Cao J, et al. Curcumin represses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB and P2X7R signaling in PMA-induced macrophages. Front Pharmacol. 2016;7:1–10. doi:10.3389/fphar.2016.00369