316
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anti-Inflammatory Effects of Camellia fascicularis Polyphenols via Attenuation of NF-κB and MAPK Pathways in LPS-Induced THP-1 Macrophages

, , , , , , , & show all
Pages 851-864 | Published online: 09 Feb 2022

References

  • Jones MA, MacCuaig WM, Frickenstein AN, et al. Molecular imaging of inflammatory disease. Biomedicines. 2021;9(2):152. doi:10.3390/biomedicines9020152
  • Wu JN, Liu ZY, Su J, Pan N, Song QL. Anti-inflammatory activity of 3β-hydroxycholest-5-en- 7-one isolated from Hippocampus trimaculatus leach via inhibiting iNOS, TNF-α, and 1L-1β of LPS induced RAW 264.7 macrophage cells. Food Funct. 2017;8(2):788–795. doi:10.1039/c6fo01154c
  • Bakheet SA, Ansari MA, Nadeem A, et al. CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal. 2019;64:109395. doi:10.1016/j.cellsig.2019.109395
  • Zhang QQ, Sun H, Zhuang SG, et al. Novel pharmacological inhibition of EZH2 attenuates septic shock by altering innate inflammatory responses to sepsis. Int Immunopharmacol. 2019;76:105899. doi:10.1016/j.cellsig.2019.109395
  • Xie Z, Wang Y, Yang G, et al. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis. 2021;12(1):79. doi:10.1038/s41419-021-03395-3
  • Ye S, Matthan NR, Lamon-Fava S, et al. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem. 2021;90:108577. doi:10.1016/j.jnutbio.2020.108577
  • Romano S, Savva GM, Bedarf JR, Charles LG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021;7(1):27. doi:10.1038/s41531-021-00156-z
  • Lu CH, Yeh DW, Lai CY, et al. USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene. 2018;37(49):6327–6340. doi:10.1038/s41388-019-0831-5
  • Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12(5):1466. doi:10.3390/nu12051466
  • Jo YH, Park HC, Choi S, et al. Metabolomic analysis reveals cyanidins in black raspberry as candidates for suppression of lipopolysaccharide-induced inflammation in murine macrophages. J Agric Food Chem. 2015;63(22):5449–5458. doi:10.1021/acs.jafc.5b00560
  • Sun YL, Liu J, Jiang XX, et al. One-step synthesis of chiral oxindole-type analogues with potent anti-inflammatory and analgesic activities. Sci Rep. 2015;5:13699. doi:10.1038/srep13699
  • Liu Y, Wang XH, Chen QB, et al. Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium-induced colitis mice. Mol Nutr Food Res. 2020;64(6):e1900943. doi:10.1002/mnfr.201900943
  • Gao X, Ho CT, Li XF, et al. Phytochemicals, anti-inflammatory, antiproliferative, and methylglyoxal trapping properties of zijuan tea. J Food Sci. 2018;83(2):517–524. doi:10.1111/1750-3841.14029
  • Peng JM, Jia Y, Hu TY, et al. GC-(4→8)-GCG, a proanthocyanidin dimer from Camellia ptilophylla, modulates obesity and adipose tissue inflammation in high-fat diet induced obese mice. Mol Nutr Food Res. 2019;63(11):e1900082. doi:10.1002/mnfr.201900082
  • Wang ZN, Guan Y, Yang R, Li JJ, Wang JS, Jia AQ. Anti-inflammatory activity of 3-cinnamoyltribuloside and its metabolomic analysis in LPS-activated RAW 264.7 cells. BMC Complement Med Ther. 2020;20(1):329. doi:10.1186/s12906-020-03115-y
  • Hisanaga A, Ishida H, Sakao K, et al. Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food Funct. 2014;5(8):1891–1897. doi:10.1039/c4fo00152d
  • Li Y, Rahman SU, Huang YY, et al. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem. 2020;78:108324. doi:10.1016/j.jnutbio.2019.108324
  • Hudlikar RR, Venkadakrishnan V, Kaushal RK, et al. Polymeric black tea polyphenols (PBPs) inhibit benzo (a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced lung carcinogenesis potentially through down-regulation of p38 and Akt phosphorylation in A/J mice. Mol Carcinog. 2017;56(2):625–640. doi:10.1016/j.jnutbio.2019.108324
  • Wang HY, Zhao MM, Yang B, Jiang YM, Rao GH. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chem. 2008;107(4):1399–1406. doi:10.1016/j.foodchem.2007.09.068
  • Xie H, Sun JQ, Chen YQ, Zong M, Li SJ, Wang Y. EGCG attenuates uric acid-induced inflammatory and oxidative stress responses by medicating the NOTCH pathway. Oxid Med Cell Longev. 2015;2015:214836. doi:10.1155/2015/214836
  • Duarte LJ, Chaves VC, dos Santos Nascimento MVP, et al. Molecular mechanism of action of pelargonidin-3-O-glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem. 2018;247:56–65. doi:10.1016/j.foodchem.2017.12.015
  • Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem. 2015;169:401–410. doi:10.1016/j.foodchem.2014.07.005
  • Oboh G, Ademiluyi AO, Akinyemi AJ, Henle T, Saliu JA, Schwarzenbolz U. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J Funct Foods. 2012;4(2):450–458. doi:10.1016/j.jff.2012.02.003
  • Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem. 2013;61(40):9517–9533. doi:10.1021/jf402506c
  • Chuang CC, McIntosh MK. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr. 2011;31:155–176. doi:10.1146/annurev-nutr-072610-145149
  • Zhao J, Lin Y, Zhao YB, et al. Polyphenol-rich blue honeysuckle extract alleviates silica particle-induced inflammatory responses and macrophage apoptosis via NRF2/HO-1 and MAPK signaling. J Funct Foods. 2018;46:463–474. doi:10.1016/j.jff.2018.05.024
  • Bao LP, Li JS, Zha DQ, et al. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the NRF2/HO-1 and NF-κB pathways. Int Immunopharmacol. 2018;54:245–253. doi:10.1016/j.intimp.2017.11.021
  • Zhang TT, Wang M, Yang L, Jiang JG, Zhao JW, Zhu W. Flavonoid glycosides from Rubus chingii Hu fruits display anti-inflammatory activity through suppressing MAPKs activation in macrophages. J Funct Foods. 2015;18:235–243. doi:10.1016/j.jff.2015.07.006
  • Min TL, Bartholomew B. Theaceae, Camellia. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press; 2007:367–372. Available from: http://flora.huh.harvard.edu/china/mss/volume12/Theaceae.pdf. Accessed January 24, 2022.
  • Liu Y, Zhao P, Bian JT, et al. Nutritional analysis and evaluation of Camellia fascicularis leaves. J Northwest A&F Univ. 2021;49(5):146–154. doi:10.13207/j.cnki.jnwafu.2021.05.019
  • Liu Y, Kan H, Fan FY, Tang JR, Zhao P. Microwave-assisted extraction and antioxidant activities of polyphenols from Camellia fascicularis leaves. Curr Top Nutraceut Res. 2019;17(2):164–171. doi:10.37290/ctnr2641-452X.17:164-171
  • Xu MJ, Shao QS, Ye SY, et al. Simultaneous extraction and identification of phenolic compounds in Anoectochilus roxburghii using microwave-assisted extraction combined with UPLC-Q-TOF-MS/MS and their antioxidant activities. Front Plant Sci. 2017;8:1474. doi:10.3389/fpls.2017.01474
  • Zhao DR, Jiang YS, Sun JY, Li HH, Luo XL, Zhao MM. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-induced inflammation in THP-1 cells. J Agric Food Chem. 2019;67(4):1230–1243. doi:10.1021/acs.jafc.8b06263
  • Wang YH, Li B, Ma Y, et al. Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function. J Funct Foods. 2016;24:1–10. doi:10.1016/j.jff.2016.03.023
  • Su JD, Osawa T, Kawakishi S, Namiki M. Tannin antioxidants from Osbeckia chinensis. Phytochemistry. 1988;27(5):1315–1319. doi:10.1016/0031-9422(88)80184-5
  • Shao YP, Zhang W, Tong L, et al. Simultaneous determination of eight bioactive components of Qishen Yiqi Dripping Pills in rat plasma using UFLC–MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr. 2017;31(8):e3941. doi:10.1002/bmc.3941
  • Li J, Chen YT. Two flavonoids from Lagopsis supina. Acta Pharm Sin. 2002;37(3):186–188. doi:10.1007/978-3-662-04835-1_146
  • Noreljaleel AEM, Kemp G, Wilhelm A, van der Westhuizen JH, Bonneta SL. Analysis of commercial proanthocyanidins. part 5: a high resolution mass spectrometry investigation of the chemical composition of sulfited wattle (Acacia mearnsii De Wild.) bark extract. Phytochemistry. 2019;162:109–120. doi:10.1016/j.phytochem.2018.12.008
  • Liu GQ, Dong J, Wang H, Wan YR, Duan YS, Chen SZ. ESI fragmentation studies of four tea catechins. Chem J Chin Univ. 2009;30(8):1566–1570. doi:10.3321/j.issn:0251-0790.2009.08.017
  • Fang XP, Anderson JE, Chang CJ, Fanwick PE, McLaughlin JL. Novel bioactive styryl-lactones: goniofufurone, goniopypyrone, and 8-acetylgoniotriol from Goniothalamus giganteus (Annonaceae). X-ray molecular structure of goniofufurone and of goniopyptrone. J Chem Soc Perkin Trans. 1990;1(6):1655–1661. doi:10.1039/p19900001655
  • Huang B, Hu YZ, Li X, Wu XH, Wang YM, Chen L. Analysis of chemical constituents in Odontosoria chinensis based on UPLC-Q-TOF-MS. Pract Clin J Integr Tradit Chin West Med. 2021;21(9):155–159. doi:10.13638/j.issn.1671-4040.2021.09.077
  • Zhang GQ, Yang YS, Xu YM, Luo HL, Yao JX, Lin ZX. Identify the chemical composition of Perilla frutescens L. by high resolution ion mobility liquid chromatography-mass spectrometry. J Fujian Agric Forest Univ. 2019;48(1):123–130. doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.01.020
  • Tan GS, Zuo CX. Studies on the chemical constituents of Hylotelephium mingjinianum (S. H. FU) H. Ohba. Acta Pharm Sin. 1994;29(7):519–525. doi:10.16438/j.0513-4870.1994.07.008
  • Zhou ZH, Zhang YJ, Yang CR. Saluenin, a new flavonol glycoside from Camellia saluenensis. Plant Diversity. 2000;22(1):90–96. doi:10.3969/j.issn.2095-0845.2000.01.014
  • Zakharova OI, Zakharov AM, Glyzin VI. Flavonoids of Agastache rugose. Chem Nat Compd. 1979;15(5):561–564. doi:10.1007/BF00565924
  • Li YM, Che QM. Studies on chemical components of Carthamus tinctorius petals. Acta Pharm Sin. 1998;33(8):626–628. doi:10.16438/j.0513-4870.1998.08.013
  • Dong H, Chen SX, Kini RM, Xu HX. Effects of Tannins from Geum japonicum on the catalytic activity of thrombin and factor Xa of blood coagulation cascade. J Nat Prod. 1998;61(11):1356–1360. doi:10.1021/np9801458
  • Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Mol Aspects Med. 2018;61:31–40. doi:10.1016/j.mam.2018.01.007
  • Zielińska S, Matkowski A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev. 2014;13(2):391–416. doi:10.1007/s11101-014-9349-1
  • Singh G, Passsari AK, Leo VV, et al. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Front Plant Sci. 2016;7:407. doi:10.3389/fpls.2016.00407
  • Xu J, Xiao CM, Xu HS, et al. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem Toxicol. 2021;150:112073. doi:10.1016/j.fct.2021.112073
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335–344. doi:10.1113/jphysiol.2003.049478
  • Bernabé J, Mulero J, Cerdá B, et al. Effects of a citrus based juice on biomarkers of oxidative stress in metabolic syndrome patients. J Funct Foods. 2013;5(3):1031–1038. doi:10.1016/j.jff.2013.02.003
  • Wang YH, Li B, Zhu JY, et al. Lonicera caerulea berry extract suppresses lipopolysaccharide-induced inflammation via Toll-like receptor and oxidative stress-associated mitogen-activated protein kinase signaling. Food Funct. 2016;7(10):4267–4277. doi:10.1039/c6fo00627b
  • Hung TV, Suzuki T. Short-chain fatty acids suppress inflammatory reactions in Caco-2 cells and mouse colons. J Agric Food Chem. 2018;66(1):108–117. doi:10.1021/acs.jafc.7b04233
  • Bhattacharyya S, Sen P, Wallet M, Long B, Baldwin AS Jr, Tisch R. Immunoregulation of dendritic cells by IL-10 is mediated through suppression of the PI3K/Akt pathway and of IκB kinase activity. Blood. 2004;104(4):1100–1109. doi:10.1182/blood-2003-12-4302
  • Fang J, Muto T, Kleppe M, et al. TRAF6 mediates basal activation of NF-κB necessary for hematopoietic stem cell homeostasis. Cell Rep. 2018;22(5):1250–1262. doi:10.1016/j.celrep.2018.01.013
  • Yeung YT, Aziz F, Guerrero-Castilla A, Arguelles S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 2018;24(14):1449–1484. doi:10.2174/1381612824666180327165604
  • Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–324. doi:10.1038/nri.2017.142
  • Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol. 2017;174(11):1378–1394. doi:10.1111/bph.13608
  • Yuan B, Zhao LY, Rakariyatham K, et al. Isolation of a novel bioactive protein from an edible mushroom Pleurotus eryngii and its anti-inflammatory potential. Food Funct. 2017;8(6):2175–2183. doi:10.1039/c7fo00244k
  • Himaya SWA, Ryu B, Qian ZJ, Kim SK. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicol in vitro. 2012;26(6):878–887. doi:10.1016/j.tiv.2012.04.022
  • Pan LL, Dai M. Paeonol from Paeonia suffruticosa prevents TNF-α-induced monocytic cell adhesion to rat aortic endothelial cells by suppression of VCAM-1 expression. Phytomedicine. 2009;16(11):1027–1032. doi:10.1016/j.phymed.2009.04.003