821
Views
27
CrossRef citations to date
0
Altmetric
REVIEW

Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1349-1364 | Published online: 25 Feb 2022

References

  • Wu H, Huang M, Cao P, et al. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther. 2012;13(5):281–288. doi:10.4161/cbt.18943
  • Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30(2):88–106. doi:10.3109/08977194.2012.660936
  • Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta Rev Cancer. 2014;1845(2):136–154.
  • Vigneswara V, Kundi S, Ahmed Z. Receptor tyrosine kinases: molecular switches regulating CNS axon regeneration. J Signal Transduct. 2012;2012:1–14
  • Lohi O, Lehto V-P. STAM/EAST/Hbp adapter proteins–integrators of signalling pathways. FEBS Lett. 2001;508(3):287–290. doi:10.1016/S0014-5793(01)03079-4
  • Park S-Y, Lee C-J, Choi J-H, et al. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res. 2019;38(1):1–18. doi:10.1186/s13046-019-1405-7
  • Thomas S, Snowden J, Zeidler M, et al. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 2015;113(3):365–371. doi:10.1038/bjc.2015.233
  • Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178(5):2623–2629. doi:10.4049/jimmunol.178.5.2623
  • von Manstein V, Min Yang C, Richter D, et al. Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther. 2013;8(3):193–202. doi:10.2174/1574362409666140206221931
  • Argetsinger LS, Kouadio J-LK, Steen H, et al. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol. 2004;24(11):4955–4967. doi:10.1128/MCB.24.11.4955-4967.2004
  • Liu Y, Wang L, Wu Y, et al. Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology. 2013;304:120–131. doi:10.1016/j.tox.2012.12.018
  • Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol. 2005;5(8):593–605. doi:10.1038/nri1667
  • Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19(5):378–387. doi:10.1634/stemcells.19-5-378
  • Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–911. doi:10.1038/nri1226
  • Laouar Y, Welte T, Fu X-Y, et al. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity. 2003;19(6):903–912. doi:10.1016/S1074-7613(03)00332-7
  • Huang LJ-S, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell. 2001;8(6):1327–1338. doi:10.1016/S1097-2765(01)00401-4
  • Zhang Z, Mao H, Du X, et al. Correction: a novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway. Oncotarget. 2016;7(49):81972. doi:10.18632/oncotarget.13803
  • Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809. doi:10.1038/nrc2734
  • Groner B, von Manstein V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017;451:1–14. doi:10.1016/j.mce.2017.05.033
  • Harada D, Takigawa N, Kiura K. The role of STAT3 in non-small cell lung cancer. Cancers. 2014;6(2):708–722. doi:10.3390/cancers6020708
  • Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 2007;251(2):199–210. doi:10.1016/j.canlet.2006.10.017
  • Wang H, Wang L, Cao L, et al. Inhibition of autophagy potentiates the anti‐metastasis effect of phenethyl isothiocyanate through JAK2/STAT3 pathway in lung cancer cells. Mol Carcinog. 2018;57(4):522–535. doi:10.1002/mc.22777
  • Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):46–54. doi:10.1038/35094059
  • Chen X, Ying Z, Lin X, et al. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. J Clin Invest. 2013;123(6):2576–2589. doi:10.1172/JCI68143
  • Alicea-Velazquez NL, Boggon TJ. The use of structural biology in Janus kinase targeted drug discovery. Curr Drug Targets. 2011;12(4):546–555. doi:10.2174/138945011794751528
  • Liu JF, Deng WW, Chen L, et al. Inhibition of JAK2/STAT3 reduces tumor‐induced angiogenesis and myeloid‐derived suppressor cells in head and neck cancer. Mol Carcinog. 2018;57(3):429–439. doi:10.1002/mc.22767
  • Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs. 2005;16(6):601–607. doi:10.1097/00001813-200507000-00002
  • Lee H, Pal SK, Reckamp K, et al. STAT3: a target to enhance antitumor immune response. Cancer Immunol Immunother. 2010;2010:41–59.
  • McLoughlin RM, Jenkins BJ, Grail D, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Nat Acad Sci. 2005;102(27):9589–9594. doi:10.1073/pnas.0501794102
  • Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11. doi:10.1128/MCB.19.1.1
  • Munoz J, Dhillon N, Janku F, et al. STAT3 inhibitors: finding a home in lymphoma and leukemia. Oncologist. 2014;19(5):536. doi:10.1634/theoncologist.2013-0407
  • Sun K-X, Xia H-W, Xia R-L. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol. 2015;8(1):615.
  • Wu J, Guo J, Cao Q, et al. Autophagy impacts on oxaliplatin-induced hepatocarcinoma apoptosis via the IL-17/IL-17R-JAK2/STAT3 signaling pathway. Oncol Lett. 2017;13(2):770–776. doi:10.3892/ol.2016.5476
  • Sun L, Hu L, Cogdell D, et al. MIR506 induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway. Autophagy. 2017;13(4):703–714. doi:10.1080/15548627.2017.1280217
  • Pokhriyal R, Hariprasad R, Kumar L, et al. Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer. 2019;11:1179299X19860815. doi:10.1177/1179299X19860815
  • Tan HF, Putoczki LT, Stylli SS, et al. The role of STAT3 signaling in mediating tumor resistance to cancer therapy. Curr Drug Targets. 2014;15(14):1341–1353. doi:10.2174/1389450115666141120104146
  • Real PJ, Sierra A, de Juan A, et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene. 2002;21(50):7611–7618. doi:10.1038/sj.onc.1206004
  • O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–170. doi:10.1056/NEJMra1202117
  • Mukthavaram R, Ouyang X, Saklecha R, et al. Effect of the JAK2/STAT3 inhibitor SAR317461 on human glioblastoma tumorspheres. J Transl Med. 2015;13(1):1–10. doi:10.1186/s12967-015-0627-5
  • Jin Y, Kim Y, Lee Y-J, et al. Natural products targeting STAT3 signaling pathways in cancer cells. Biodesign. 2016;4:1–17.
  • Qiao H, Zhao D, Shi H, et al. Novel quinazoline derivatives exhibit antitumor activity by inhibiting JAK2/STAT3. Oncol Rep. 2015;34(4):1875–1882. doi:10.3892/or.2015.4140
  • Li X, Jia L, Lu X, et al. Dihydroartemisinin is a newly defined STAT3 inhibitor that may be of multiple potential uses in cancer treatment. Cancer Cell Microenviron. 2016;3:1.
  • Darvin P, Baeg SJ, Joung YH, et al. Tannic acid inhibits the Jak2/STAT3 pathway and induces G1/S arrest and mitochondrial apoptosis in YD-38 gingival cancer cells. Int J Oncol. 2015;47(3):1111–1120. doi:10.3892/ijo.2015.3098
  • Guo D, Wang C, Wang Q, et al. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response. Oncotarget. 2017;8(24):39640. doi:10.18632/oncotarget.17387
  • Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22(5):497–505. doi:10.1038/nm.4082
  • Corcoran RB, Contino G, Deshpande V, et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 2011;71(14):5020–5029. doi:10.1158/0008-5472.CAN-11-0908
  • Niu G, Wright KL, Ma Y, et al. Role of Stat3 in regulating p53 expression and function. Mol Cell Biol. 2005;25(17):7432–7440. doi:10.1128/MCB.25.17.7432-7440.2005
  • Loncle C, Bonjoch L, Folch-Puy E, et al. IL17 functions through the novel REG3β–JAK2–STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer. Cancer Res. 2015;75(22):4852–4862. doi:10.1158/0008-5472.CAN-15-0896
  • Rabi T, Catapano CV. Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells. Tumor Biol. 2016;37(9):12455–12464. doi:10.1007/s13277-016-5102-2
  • Wörmann SM, Song L, Ai J, et al. Loss of P53 function activates JAK2–STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology. 2016;151(1):180–93. e12. doi:10.1053/j.gastro.2016.03.010
  • Girisa S, Shabnam B, Monisha J, et al. Potential of zerumbone as an anti-cancer agent. Molecules. 2019;24(4):734. doi:10.3390/molecules24040734
  • Shankar S, Suthakar G, Srivastava RK. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front Biosci. 2007;12(12):5039–5051. doi:10.2741/2446
  • Wang S, Chen X, Tang M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. Oncol Rep. 2014;32(6):2824–2830. doi:10.3892/or.2014.3478
  • Garcia R, Bowman TL, Niu G, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20(20):2499–2513. doi:10.1038/sj.onc.1204349
  • Kim MS, Lee WS, Jeong J, et al. Induction of metastatic potential by TrkB via activation of IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget. 2015;6(37):40158. doi:10.18632/oncotarget.5522
  • Marotta LL, Almendro V, Marusyk A, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+ CD24–stem cell–like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–2735. doi:10.1172/JCI44745
  • Zhu D, Shen Z, Liu J, et al. The ROS-mediated activation of STAT-3/VEGF signaling is involved in the 27-hydroxycholesterol-induced angiogenesis in human breast cancer cells. Toxicol Lett. 2016;264:79–86. doi:10.1016/j.toxlet.2016.11.006
  • Siddiquee KAZ, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–267. doi:10.1038/cr.2008.18
  • Li GX, Tiulim JW, Lang JE, et al. Inflammatory breast cancer: diagnostic, molecular and therapeutic considerations. Curr Breast Cancer Rep. 2019;11(4):335–346. doi:10.1007/s12609-019-00337-z
  • Ferrand A, Kowalski-Chauvel A, Bertrand C, et al. Involvement of JAK2 upstream of the PI 3-kinase in cell–cell adhesion regulation by gastrin. Exp Cell Res. 2004;301(2):128–138. doi:10.1016/j.yexcr.2004.07.037
  • Nightingale J, Patel S, Suzuki N, et al. Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J Am Soc Nephrol. 2004;15(1):21–32. doi:10.1097/01.ASN.0000102479.92582.43
  • Liu X, Ji Q, Ye N, et al. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE 2 mediated JAK2/STAT3 signaling pathway. PLoS One. 2015;10(5):e0123478. doi:10.1371/journal.pone.0123478
  • Liu K, Gao H, Wang Q, et al. Hispidulin suppresses cell growth and metastasis by targeting PIM 1 through JAK 2/STAT 3 signaling in colorectal cancer. Cancer Sci. 2018;109(5):1369–1381. doi:10.1111/cas.13575
  • Lu YM, Chen W, Zhu JS, et al. Eriocalyxin B blocks human SW1116 colon cancer cell proliferation, migration, invasion, cell cycle progression and angiogenesis via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13(3):2235–2240. doi:10.3892/mmr.2016.4800
  • Li N, Mao D, Cao Y, et al. Downregulation of SIRT6 by miR-34c-5p is associated with poor prognosis and promotes colon cancer proliferation through inhibiting apoptosis via the JAK2/STAT3 signaling pathway. Int J Oncol. 2018;52(5):1515–1527. doi:10.3892/ijo.2018.4304
  • Lin TE, HuangFu W-C, Chao M-W, et al. A novel selective JAK2 inhibitor identified using pharmacological interactions. Front Pharmacol. 2018;9:1379. doi:10.3389/fphar.2018.01379
  • Seo J-M, Park S, Kim J-H. Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem. 2012;287(17):13840–13849. doi:10.1074/jbc.M111.317131
  • Chen M-W, Yang S-T, Chien M-H, et al. The STAT3-miRNA-92-Wnt signaling pathway regulates spheroid formation and malignant progression in ovarian cancer. Cancer Res. 2017;77(8):1955–1967. doi:10.1158/0008-5472.CAN-16-1115
  • Pan J-X, Ding K, Wang C-Y. Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer. 2012;31(4):178. doi:10.5732/cjc.011.10290
  • YoshikawaT,MiyamotoM,AoyamaT,etal.JAK2/STAT3 pathway as a therapeutic target in ovarian cancers. Oncol Lett. 2018; 15(4):5772–5780. doi: 10.3892/ol.2018.8028
  • Yoshikawa T, Miyamoto M, Aoyama T, et al. JAK2/STAT3 pathway as a therapeutic target in ovarian cancers. Oncol Lett. 2018;15(4):5772–5780. doi:10.3892/ol.2018.8028
  • Benabbou N, Mirshahi P, Cadillon M, et al. Hospicells promote upregulation of the ATP-binding cassette genes by insulin-like growth factor-I via the JAK2/STAT3 signaling pathway in an ovarian cancer cell line. Int J Oncol. 2013;43(3):685–694. doi:10.3892/ijo.2013.2017
  • Zhang W, Lei C, Fan J, et al. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cyclin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis. Biochem Biophys Res Commun. 2016;477(1):144–149. doi:10.1016/j.bbrc.2016.06.034
  • Peng H-Y, Cheng Y-C, Hsu Y-M, et al. MPT0B098, a microtubule inhibitor, suppresses JAK2/STAT3 signaling pathway through modulation of SOCS3 stability in oral squamous cell carcinoma. PLoS One. 2016;11(7):e0158440. doi:10.1371/journal.pone.0158440
  • Song Q, Liu B, Li X, et al. miR-26a-5p potentiates metastasis of human lung cancer cells by regulating ITGβ8-JAK2/STAT3 axis. Biochem Biophys Res Commun. 2018;501(2):494–500. doi:10.1016/j.bbrc.2018.05.020
  • Looyenga BD, Hutchings D, Cherni I, et al. STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One. 2012;7(2):e30820. doi:10.1371/journal.pone.0030820
  • Wu L, Guo L, Liang Y, et al. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep. 2015;34(6):3311–3317. doi:10.3892/or.2015.4279
  • Liu X, Chen B, You W, et al. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett. 2018;412:194–207. doi:10.1016/j.canlet.2017.10.017
  • Zhou J, Wu A, Yu X, et al. SIRT6 inhibits growth of gastric cancer by inhibiting JAK2/STAT3 pathway. Oncol Rep. 2017;38(2):1059–1066. doi:10.3892/or.2017.5753
  • Katsha A, Arras J, Soutto M, et al. AURKA regulates JAK2–STAT3 activity in human gastric and esophageal cancers. Mol Oncol. 2014;8(8):1419–1428. doi:10.1016/j.molonc.2014.05.012
  • Xu W, Chen G-S, Shao Y, et al. Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells. Cancer Lett. 2013;332(1):11–18. doi:10.1016/j.canlet.2012.12.030
  • Kim M-J, Nam H-J, Kim H-P, et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett. 2013;335(1):145–152. doi:10.1016/j.canlet.2013.02.010
  • Chen Z-M, Huang L, Li -M-M, et al. Inhibitory effects of isocryptotanshinone on gastric cancer. Sci Rep. 2018;8(1):1–10. doi:10.1038/s41598-017-17765-5
  • Zhang -R-R, Wang H, Hui N, et al. Enhanced antitumor effect of axitinib synergistic interaction with AG490 via VEGFR2/JAK2/STAT3 signaling mediated epithelial-mesenchymal transition in cervical cancer in vitro. Asian Biomed. 2013;7(1):39–49.
  • Li H, Lu Y, Pang Y, et al. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother. 2017;86:324–333. doi:10.1016/j.biopha.2016.12.036
  • Rizzo A, Brandi G. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treat Res Commun. 2021;27:100328. doi:10.1016/j.ctarc.2021.100328
  • Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene. 2002;21(13):2000–2008. doi:10.1038/sj.onc.1205260
  • Shen W, Chen C, Guan Y, et al. A pumpkin polysaccharide induces apoptosis by inhibiting the JAK2/STAT3 pathway in human hepatoma HepG2 cells. Int J Biol Macromol. 2017;104:681–686. doi:10.1016/j.ijbiomac.2017.06.078
  • Tang JJH, Thng DKH, Lim JJ, et al. JAK/STAT signaling in hepatocellular carcinoma. Hepat Onco. 2020;7:1.
  • Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: is it relevant to cholangiocarcinoma progression. World J Gastroenterol. 2007;13(48):6478. doi:10.3748/wjg.v13.i48.6478
  • Rizzo A, Ricci AD, Brandi G. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers. 2021;13(3):558. doi:10.3390/cancers13030558
  • Ostroukhova TY, Kulikov A, Rozenkrants A, et al. Overexpression of prolactin receptors during intrahepatic transplantation of RS1 rat cholangiocellular carcinoma cells. Bull Exp Biol Med. 2006;141(3):364–367. doi:10.1007/s10517-006-0172-6
  • Orlova A, Smirnova O, Turovetskiĭ V, et al. Effect of bromocriptin on prolactin receptor expression in liver cells after the common bile duct ligation. Biull Eksp Biol Med. 1998;126(7):52–55.
  • Orlova A, Smirnov A, Smirnova O. The role of prolactin in the functional regulation of liver cells after the common bile duct ligation. Biull Eksp Biol Med. 1999;127(5):573–575.
  • Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393(1):7–20. doi:10.1042/BJ20051578
  • Fernández-Martínez E, Pérez-álvarez V, Tsutsumi V, et al. Chronic bile duct obstruction induces changes in plasma and hepatic levels of cytokines and nitric oxide in the rat. Exp Toxicol Pathol. 2006;58(1):49–58. doi:10.1016/j.etp.2006.03.002
  • Meng F, Yamagiwa Y, Ueno Y, et al. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol. 2006;44(6):1055–1065. doi:10.1016/j.jhep.2005.10.030
  • Wu F, Wu L, Zheng S, et al. The clinical value of hepatocyte growth factor and its receptor—c-met for liver cancer patients with hepatectomy. Dig Liver Dis. 2006;38(7):490–497. doi:10.1016/j.dld.2006.03.007
  • Imai Y, Kubota Y, Yamamoto S, et al. Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol. 2005;20(2):287–293. doi:10.1111/j.1440-1746.2004.03575.x
  • Bernichtein S, Kayser C, Dillner K, et al. Development of pure prolactin receptor antagonists. J Biol Chem. 2003;278(38):35988–35999. doi:10.1074/jbc.M305687200
  • Kirchhofer D, Lipari MT, Santell L, et al. Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist. Proc Nat Acad Sci. 2007;104(13):5306–5311. doi:10.1073/pnas.0700184104
  • Gurbuz V, Konac E, Varol N, et al. Effects of AG490 and S3I‑201 on regulation of the JAK/STAT3 signaling pathway in relation to angiogenesis in TRAIL‑resistant prostate cancer cells in vitro. Oncol Lett. 2014;7(3):755–763. doi:10.3892/ol.2014.1795
  • Jorvig JE, Chakraborty A. Zerumbone inhibits growth of hormone refractory prostate cancer cells by inhibiting JAK2/STAT3 pathway and increases paclitaxel sensitivity. Anticancer Drugs. 2015;26(2):160–166. doi:10.1097/CAD.0000000000000171
  • Wu K-J, Huang J-M, Zhong H-J, et al. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One. 2017;12(6):e0177123. doi:10.1371/journal.pone.0177123
  • Fu XQ, Chou JY, Li T, et al. The JAK 2/STAT 3 pathway is involved in the anti‐melanoma effects of atractylenolide I. Exp Dermatol. 2018;27(2):201–204. doi:10.1111/exd.13454
  • Ren Y, Huang S-S, Wang X, et al. Ginkgetin induces apoptosis in 786-O cell line via suppression of JAK2-STAT3 pathway. Iran J Basic Med Sci. 2016;19(11):1245.
  • Hao Z, Sadek I. Sunitinib: the antiangiogenic effects and beyond. Onco Targets Ther. 2016;9:5495. doi:10.2147/OTT.S112242
  • Yang C, Zhang W, Wang L, et al. Musashi-2 promotes migration and invasion in bladder cancer via activation of the JAK2/STAT3 pathway. Lab Investig. 2016;96(9):950–958. doi:10.1038/labinvest.2016.71
  • Hindupur SV, Schmid SC, Koch JA, et al. STAT3/5 inhibitors suppress proliferation in bladder cancer and enhance oncolytic adenovirus therapy. Int J Mol Sci. 2020;21(3):1106. doi:10.3390/ijms21031106
  • Joung YH, Na YM, Yoo YB, et al. Combination of AG490, a Jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder tumor growth via the Jak2/STAT3 pathway. Int J Oncol. 2014;44(3):883–895. doi:10.3892/ijo.2014.2250
  • Zhang H, Ye Y, Li M, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36(15):2095–2104. doi:10.1038/onc.2016.367
  • Tsujita Y, Horiguchi A, Tasaki S, et al. STAT3 inhibition by WP1066 suppresses the growth and invasiveness of bladder cancer cells. Oncol Rep. 2017;38(4):2197–2204. doi:10.3892/or.2017.5902
  • Chen C-L, Cen L, Kohout J, et al. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol Cancer. 2008;7(1):1–12. doi:10.1186/1476-4598-7-78
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi:10.1007/s00401-009-0619-8
  • Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061.
  • Wang Y, Wong CW, Yan M, et al. Differential regulation of the pro-inflammatory biomarker, YKL-40/CHI3L1, by PTEN/Phosphoinositide 3-kinase and JAK2/STAT3 pathways in glioblastoma. Cancer Lett. 2018;429:54–65. doi:10.1016/j.canlet.2018.04.040
  • Jensen KV, Cseh O, Aman A, et al. The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PLoS One. 2017;12(12):e0189670. doi:10.1371/journal.pone.0189670
  • Zhang X, Yue P, Page BD, et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Nat Acad Sci. 2012;109(24):9623–9628. doi:10.1073/pnas.1121606109