382
Views
12
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging?

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2051-2073 | Published online: 28 Mar 2022

References

  • Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2016;2016:1–18. doi:10.1155/2016/3565127
  • El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380–401. doi:10.1016/j.freeradbiomed.2013.07.003
  • Guo Z, Wang G, Wu B, et al. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J Clin Invest. 2020;130(11):5893–5908. doi:10.1172/JCI136466
  • Annesley SJ, Fisher PR. Mitochondria in Health and Disease. Cells. 2019;8(7):680. doi:10.3390/cells8070680
  • Cordani M, Donadelli M, Strippoli R, Bazhin AV, Sánchez-álvarez M. Interplay between ROS and Autophagy in Cancer and Aging: from Molecular Mechanisms to Novel Therapeutic Approaches. Oxid Med Cell Longev. 2019;2019:1–3. doi:10.1155/2019/8794612
  • Kudryavtseva AV, Krasnov GS, Dmitriev AA, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7(29):44879–44905. doi:10.18632/oncotarget.9821
  • Baranov S, Baranova E. Aging and Ambiguous ROS. System Genetics Analysis. Curr Aging Sci. 2017;10(1):6–11. doi:10.2174/1874609809666160921114504
  • Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88–93. doi:10.4161/cam.3.1.7402
  • Ahmad S, Khan MS, Akhter F, et al. Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology. 2014;24(11):979–990. doi:10.1093/glycob/cwu057
  • Yang K, Wang XQ, He YS, et al. Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol. 2010;9(1):66. doi:10.1186/1475-2840-9-66
  • Moldogazieva NT, Mokhosoev IM, Melnikova TI, Porozov YB, Terentiev AA. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2019;2019:1–14. doi:10.1155/2019/3085756
  • Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–260. doi:10.1016/j.redox.2018.09.025
  • Shen C-Y, Lu C-H, Wu C-H, et al. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules. 2020;25(23):5591. doi:10.3390/molecules25235591
  • Yamagishi S, Matsui T, Ishibashi Y, et al. Phytochemicals Against Advanced Glycation End Products (AGEs) and the Receptor System. Curr Pharm Des. 2017;23(8):1135–1141. doi:10.2174/1381612822666161021155502
  • Omolaoye TS, du Plessis SS. Male infertility: a proximate look at the advanced glycation end products. Reprod Toxicol. 2020;93:169–177. doi:10.1016/j.reprotox.2020.02.002
  • Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci. 2020;21(9):846–859. doi:10.2174/1389203721666200505101734
  • Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546. doi:10.4103/2230-8210.183480
  • Chen J, Tan W. Platelet activation and immune response in diabetic microangiopathy. Clin Chim Acta. 2020;507:242–247. doi:10.1016/j.cca.2020.04.042
  • Madonna R, Balistreri CR, Geng Y-J, De Caterina R. Diabetic microangiopathy: pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol. 2017;90:1–7. doi:10.1016/j.vph.2017.01.004
  • Nedić O, Rattan SIS, Grune T, Trougakos IP. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res. 2013;47(sup1):28–38. doi:10.3109/10715762.2013.806798
  • Filošević Vujnović A, Jović K, Pištan E, Andretić Waldowski R. Influence of Dopamine on Fluorescent Advanced Glycation End Products Formation Using Drosophila melanogaster. Biomolecules. 2021;11(3):453. doi:10.3390/biom11030453
  • Desai KM, Chang T, Wang H, et al. Oxidative stress and aging: is methylglyoxal the hidden enemy?This review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol. 2010;88(3):273–284. doi:10.1139/Y10-001
  • Bejarano E, Taylor A. Too sweet: problems of protein glycation in the eye. Exp Eye Res. 2019;178:255–262. doi:10.1016/j.exer.2018.08.017
  • Zhang C-Z, Cheng X-Q, Li J-Y, et al. Saliva in the diagnosis of diseases. Int J Oral Sci. 2016;8(3):133–137. doi:10.1038/ijos.2016.38
  • Maciejczyk M, Bielas M, Zalewska A, Gerreth K. Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: from Basic Research to Clinical Practice. Oxid Med Cell Longev. 2021;2021:5545330. doi:10.1155/2021/5545330
  • Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules. 2020;25(13):3098. doi:10.3390/molecules25133098
  • Carpenter GH. The Secretion, Components, and Properties of Saliva. Annu Rev Food Sci Technol. 2013;4(1):267–276. doi:10.1146/annurev-food-030212-182700
  • Porcheri C, Mitsiadis TA. Physiology, Pathology and Regeneration of Salivary Glands. Cells. 2019;8(9):976. doi:10.3390/cells8090976
  • Proctor GB. The physiology of salivary secretion. Periodontol. 2016;70(1):11–25. doi:10.1111/prd.12116
  • Matczuk J, Żendzian-piotrowska M, Maciejczyk M, Kurek K. Salivary lipids: a review. Adv Clin Exp Med. 2017;26(6):1023–1031. doi:10.17219/acem/63030
  • Kaneko C, Kobayashi T, Ito S, et al. Circulating levels of carbamylated protein and neutrophil extracellular traps are associated with periodontitis severity in patients with rheumatoid arthritis: a pilot case-control study. PLoS One. 2018;13(2):e0192365–e0192365. doi:10.1371/journal.pone.0192365
  • Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26(4):781–791. doi:10.1128/CMR.00021-13
  • Malathi N, Mythili S, Vasanthi HR. Salivary Diagnostics: a Brief Review. ISRN Dent. 2014;2014:1–8. doi:10.1155/2014/158786
  • Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–687. doi:10.1373/clinchem.2010.153767
  • Pesce MA, Spitalnik SL. Saliva and the Clinical Pathology Laboratory. Ann N Y Acad Sci. 2007;1098(1):192–199. doi:10.1196/annals.1384.032
  • Maciejczyk M, Zalewska A, Ładny JR. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid Med Cell Longev. 2019;2019:1–12. doi:10.1155/2019/4393460
  • Choromańska M, Klimiuk A, Kostecka-Sochoń P, et al. Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia patients. Can salivary AGE be a marker of dementia? Int J Mol Sci. 2017;18(10):873w4. doi:10.3390/ijms18102205
  • Zalewska A, Klimiuk A, Zięba S, et al. Salivary gland dysfunction and salivary redox imbalance in patients with Alzheimer’s disease. Sci Rep. 2021;11(1):23904. doi:10.1038/s41598-021-03456-9
  • Klimiuk A, Zalewska A, Knapp M, Sawicki R, Ładny JR, Maciejczyk M. Salivary gland dysfunction in patients with chronic heart failure is aggravated by nitrosative stress, as well as oxidation and glycation of proteins. Biomolecules. 2021;11(1):1–27. doi:10.3390/biom11010119
  • Maciejczyk M, Mil KM, Gerreth P, Hojan K, Zalewska A, Gerreth K. Salivary cytokine profile in patients with ischemic stroke. Sci Rep. 2021;11(1):17185. doi:10.1038/s41598-021-96739-0
  • Morawska K, Maciejczyk M, Zięba S, et al. Cytokine/Chemokine/Growth Factor Profiles Contribute to Understanding the Pathogenesis of the Salivary Gland Dysfunction in Euthyroid Hashimoto’s Thyroiditis Patients. Mediators Inflamm. 2021;2021:3192409. doi:10.1155/2021/3192409
  • World Health Organization. Surveys: Basic Methods - World Health Organization. World Health Organization; 2017.
  • Choromańska B, Myśliwiec P, Kozłowski T, et al. Antioxidant Barrier and Oxidative Damage to Proteins, Lipids, and DNA/RNA in Adrenal Tumor Patients. Oxid Med Cell Longev. 2021;2021:5543531. doi:10.1155/2021/5543531
  • Walker JM. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In: Basic Protein and Peptide Protocols. Vol. 32. New Jersey: Humana Press;1994:5–8. doi:10.1385/0-89603-268-X:5
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77. doi:10.1016/0003-9861(59)90090-6
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233(C):357–363. doi:10.1016/S0076-6879(94)33041-7
  • Cabello-Verrugio C, Simon F, Trollet C, Santibañez JF. Oxidative Stress in Disease and Aging: mechanisms and Therapies 2016. Oxid Med Cell Longev. 2017;2017:1–2. doi:10.1155/2017/4310469
  • Monnier VM, Taniguchi N. Advanced glycation in diabetes, aging and age-related diseases: conclusions. Glycoconj J. 2016;33(4):691–692. doi:10.1007/s10719-016-9711-1
  • Suji G, Sivakami S. Glucose, glycation and aging. Biogerontology. 2004;5(6):365–373. doi:10.1007/s10522-004-3189-0
  • Nicolas C, Jaisson S, Gorisse L, et al. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci Rep. 2019;9(1):18291. doi:10.1038/s41598-019-54817-4
  • Gorisse L, Pietrement C, Vuiblet V, et al. Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci. 2016;113(5):1191–1196. doi:10.1073/pnas.1517096113
  • Bedard K, Krause K-H. The NOX Family of ROS-Generating NADPH Oxidases: physiology and Pathophysiology. Physiol Rev. 2007;87(1):245–313. doi:10.1152/physrev.00044.2005
  • Simpson DSA, Oliver PL. ROS Generation in Microglia: understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9(8):743. doi:10.3390/antiox9080743
  • Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019;49:35–45. doi:10.1016/j.mito.2019.07.003
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: a Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24(8):1583. doi:10.3390/molecules24081583
  • Dąbrowska Z, Bijowski K, Dąbrowska E, Pietruska M. Effect of oxidants and antioxidants on oral health. Med Ogólna i Nauk o Zdrowiu. 2020;26(2):87–93. doi:10.26444/monz/122255
  • Battino M, Ferreiro MS, Gallardo I, Newman HN, Bullon P. The antioxidant capacity of saliva. J Clin Periodontol. 2002;29(3):189–194. doi:10.1034/j.1600-051X.2002.290301x.x
  • Eichler J. Protein glycosylation. Curr Biol. 2019;29(7):R229–R231. doi:10.1016/j.cub.2019.01.003
  • Zińczuk J, Zaręba K, Kamińska J, et al. Association of Tumour Microenvironment with Protein Glycooxidation, DNA Damage, and Nitrosative Stress in Colorectal Cancer. Cancer Manag Res. 2021;13:6329–6348. doi:10.2147/CMAR.S314940
  • Klimiuk A, Maciejczyk M, Choromańska M, Fejfer K, Waszkiewicz N, Zalewska A. Salivary Redox Biomarkers in Different Stages of Dementia Severity. J Clin Med. 2019;8(6). doi:10.3390/jcm8060840
  • Walton EL. Saliva biomarkers in neurological disorders: a “spitting image” of brain health? Biomed J. 2018;41(2):59–62. doi:10.1016/j.bj.2018.04.005
  • Krahel A, Paszynska E, Slopien A, et al. Stress/Immune Biomarkers in Saliva among Children with ADHD Status. Int J Environ Res Public Health. 2021;18(2):769. doi:10.3390/ijerph18020769
  • Mehta T, Fayyaz M, Giler GE, et al. Current Trends in Biomarkers for Traumatic Brain Injury. Open Access J Neurol Neurosurg. 2020;12(4):86–94.
  • Maciejczyk M, Zalewska A, Gerreth K. Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. J Clin Med. 2020;9(2):497. doi:10.3390/jcm9020497
  • Risso FM, Sannia A, Gavilanes DAW, et al. Biomarkers of brain damage in preterm infants. J Matern Neonatal Med. 2012;25(sup4):93–96. doi:10.3109/14767058.2012.715024
  • Wormwood KL, Aslebagh R, Channaveerappa D, et al. Salivary proteomics and biomarkers in neurology and psychiatry. Clin Appl. 2015;9(9–10):899–906. doi:10.1002/prca.201400153
  • François M, Bull CF, Fenech MF, Leifert WR. Current State of Saliva Biomarkers for Aging and Alzheimer’s Disease. Curr Alzheimer Res. 2018;16(1):56–66. doi:10.2174/1567205015666181022094924
  • Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [15O]-gas PET: a technical review in the era of PET/MRI. Neuroimage. 2020;220:117136. doi:10.1016/j.neuroimage.2020.117136
  • Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int J Mol Sci. 2015;16(11):25959–25981. doi:10.3390/ijms161125939
  • Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: what’s new? Int J Mol Sci. 2019;20(4):634. doi:10.3390/ijms20040874
  • Castellani R, Smith MA, Richey GL, Perry G. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res. 1996;737(1–2):195–200. doi:10.1016/0006-8993(96
  • Facheris M, Beretta S, Ferrarese C. Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? Polidori MC. J Alzheimer’s Dis. 2004;6(2):177–184. doi:10.3233/JAD-2004-6210
  • Sayre L, Smith M, Perry G. Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. Curr Med Chem. 2001;8(7):721–738. doi:10.2174/0929867013372922
  • Pukhalskaia AE, Dyatlova AS, Linkova NS, et al. Sirtuins as Possible Predictors of Aging and Alzheimer’s Disease Development: verification in the Hippocampus and Saliva. Bull Exp Biol Med. 2020;169(6):821–824. doi:10.1007/s10517-020-04986-4
  • Jaisson S, Pietrement C, Gillery P. Protein Carbamylation: chemistry, Pathophysiological Involvement, and Biomarkers. Advances in Clinical Chemistry. 2018;84:1–38. doi:10.1016/bs.acc.2017.12.001
  • Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol. 2017;13(9):580–593. doi:10.1038/nrneph.2017.103
  • Qiu G-H, Zheng X, Fu M, Huang C, Yang X. The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology. 2019;20(6):741–761. doi:10.1007/s10522-019-09832-3
  • Babbar M, Basu S, Yang B, Croteau DL, Bohr VA. Mitophagy and DNA damage signaling in human aging. Mech Ageing Dev. 2020;186:111207. doi:10.1016/j.mad.2020.111207
  • Agathangelou K, Apostolou Z, Garinis GA. Nuclear DNA Damage and Ageing. In:. 2018;309–322. doi:10.1007/978-981-13-2835-0_10
  • da Silva PFL, Schumacher B. DNA damage responses in ageing. Open Biol. 2019;9(11):190168. doi:10.1098/rsob.190168
  • Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA Cell Biol. 2020;39(8):1410–1420. doi:10.1089/dna.2019.5347
  • Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592(5):728–742. doi:10.1002/1873-3468.12956
  • Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging. Science. 2005;309(5733):481–484. doi:10.1126/science.1112125
  • Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev. 1998;7(1):9–16.
  • Han Y, Chen JZ. Oxidative Stress Induces Mitochondrial DNA Damage and Cytotoxicity through Independent Mechanisms in Human Cancer Cells. Biomed Res Int. 2013;2013:1–8. doi:10.1155/2013/825065
  • Zińczuk J, Maciejczyk M, Zaręba K, et al. Pro-Oxidant Enzymes, Redox Balance and Oxidative Damage to Proteins, Lipids and DNA in Colorectal Cancer Tissue. Is Oxidative Stress Dependent on Tumour Budding and Inflammatory Infiltration? Cancers. 2020;12(6):523. doi:10.3390/cancers12061636
  • Kaur J, Politis C, Jacobs R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: diagnostic value and free radical mechanism of action. Clin Oral Investig. 2016;20(2):315–319. doi:10.1007/s00784-015-1506-4
  • Adeoye J, Brennan PA, Thomson P. “Search less, verify more”—Reviewing salivary biomarkers in oral cancer detection. J Oral Pathol Med. 2020;49(8):711–719. doi:10.1111/jop.13003
  • Wagner K-H, Cameron-Smith D, Wessner B, Franzke B. Biomarkers of Aging: from Function to Molecular Biology. Nutrients. 2016;8(6):338. doi:10.3390/nu8060338
  • Bai X. Biomarkers of Aging. In:. 2018;217–234. doi:10.1007/978-981-13-1117-8_14
  • Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson–Gilford Progeria Syndrome: a Premature Aging Disease. Mol Neurobiol. 2017. doi:10.1007/s12035-017-0610-7
  • Foo MXR, Ong PF, Dreesen O. Premature aging syndromes: from patients to mechanism. J Dermatol Sci. 2019;96(2):58–65. doi:10.1016/j.jdermsci.2019.10.003
  • Schnabel F, Kornak U, Wollnik B. Premature aging disorders: a clinical and genetic compendium. Clin Genet. 2021;99(1):3–28. doi:10.1111/cge.13837
  • Leopold JA. Editorial commentary: premature peripheral arterial disease: a consequence of accelerated vascular aging due to less than ideal cardiovascular health? Trends Cardiovasc Med. 2021;31(6):359–360. doi:10.1016/j.tcm.2020.06.011
  • Ikeda Y, Kumagai H, Motozawa Y, Suzuki J, Akazawa H, Komuro I. Understanding Vascular Diseases: lessons From Premature Aging Syndromes. Can J Cardiol. 2016;32(5):650–658. doi:10.1016/j.cjca.2015.12.003
  • Huebschmann AG, Kohrt WM, Regensteiner JG. Exercise attenuates the premature cardiovascular aging effects of type 2 diabetes mellitus. Vasc Med. 2011;16(5):378–390. doi:10.1177/1358863X11419996
  • Burton DGA, Faragher RGA. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology. 2018;19(6):447–459. doi:10.1007/s10522-018-9763-7
  • Maciejczyk M, Heropolitanska-Pliszka E, Pietrucha B, et al. Antioxidant defense, redox homeostasis, and oxidative damage in children with ataxia telangiectasia and Nijmegen breakage syndrome. Front Immunol. 2019;10(SEP):365. doi:10.3389/fimmu.2019.02322
  • Pietrucha B, Heropolitanska-Pliszka E, Maciejczyk M, et al. Comparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndrome. Oxid Med Cell Longev. 2017;2017:1–8. doi:10.1155/2017/6745840
  • Skirbekk VF, Staudinger UM, Cohen JE. How to Measure Population Aging? The Answer Is Less than Obvious: a Review. Gerontology. 2019;65(2):136–144. doi:10.1159/000494025
  • Xu F, Laguna L, Sarkar A. Aging-related changes in quantity and quality of saliva: where do we stand in our understanding? J Texture Stud. 2019;50(1):27–35. doi:10.1111/jtxs.12356
  • Bel’skaya LV, Sarf EA, Solomatin DV. Age and Gender Characteristics of the Infrared Spectra of Normal Human Saliva. Appl Spectrosc. 2020;74(5):536–543. doi:10.1177/0003702819885958
  • Avezov K, Reznick AZ, Aizenbud D. Oxidative stress in the oral cavity: sources and pathological outcomes. Respir Physiol Neurobiol. 2015;209:91–94. doi:10.1016/j.resp.2014.10.007
  • Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8–17. doi:10.1016/j.archoralbio.2018.04.018
  • Zieniewska I, Maciejczyk M, Zalewska A. The effect of selected dental materials used in conservative dentistry, endodontics, surgery, and orthodontics as well as during the periodontal treatment on the redox balance in the oral cavity. Int J Mol Sci. 2020;21(24):9684. doi:10.3390/ijms21249684