187
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Elevated TNF-α Induces Thrombophagocytosis by Mononuclear Cells in ex vivo Whole-Blood Co-Culture with Dengue Virus

, , , , & ORCID Icon
Pages 1717-1728 | Published online: 05 Mar 2022

References

  • Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009;20(2):97–113. doi:10.1016/j.cytogfr.2009.02.004
  • World Health Organization. Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic fever; 2011.
  • Vogt MB, Lahon A, Arya RP, Spencer Clinton JL, Rico-Hesse R. Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis. 2019;13(11):e0007837. doi:10.1371/journal.pntd.0007837
  • Basu A, Jain P, Gangodkar SV, Shetty S, Ghosh K. Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS Immunol Med Microbiol. 2008;53:46–51. doi:10.1111/j.1574-695X.2008.00399.x
  • Sridharan A, Chen Q, Tang KF, Ooi EE, Hibberd ML, Chen J. Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. J Virol. 2013;87(21):11648–11658. doi:10.1128/JVI.01156-13
  • Huang KJ, Lin YS, Liu HS, Yeh TM, Liu CC, Lei HY. Generation of anti-platelet autoantibody during dengue virus infection. Am J Infect Dis. 2008;4(1):50–59. doi:10.3844/ajidsp.2008.50.59
  • Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol. 2014;5. doi:10.3389/fimmu.2014.00649
  • Mannaioni P, Di Bello M, Masini E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res. 1997;46(1):4–18. doi:10.1007/PL00000158
  • Hottz ED, Medeiros-de-moraes IM, Vieira-de-abreu A, et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol. 2014;193(4):1864–1872. doi:10.4049/jimmunol.1400091
  • Gawaz M, Fateh‐Moghadam S, Pilz G, Gurland HJ, Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest. 1995;25(11):843–851. doi:10.1111/j.1365-2362.1995.tb01694.x
  • Dib PRB, Quirino‐Teixeira AC, Merij LB, et al. Innate immune receptors in platelets and platelet‐leukocyte interactions. J Leukoc Biol. 2020;108(4):1157–1182. doi:10.1002/JLB.4MR0620-701R
  • Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol. 2015;6:83. doi:10.3389/fimmu.2015.00083
  • Kou Z, Quinn M, Chen H, et al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol. 2008;80(1):134–146. doi:10.1002/jmv.21051
  • Durbin AP, Vargas MJ, Wanionek K, et al. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology. 2008;376(2):429–435. doi:10.1016/j.virol.2008.03.028
  • Alhoot MA, Wang SM, Sekaran SD. Inhibition of dengue virus entry and multiplication into monocytes using RNA interference. PLoS Negl Trop Dis. 2011;5(11):e1410. doi:10.1371/journal.pntd.0001410
  • Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and macrophages as viral targets and reservoirs. Int J Mol Sci. 2018;19(9):2821. doi:10.3390/ijms19092821
  • Ong SP, Lee LM, Leong YFI, Ng ML, Chu JJH. Dengue virus infection mediates HMGB1 release from monocytes involving PCAF acetylase complex and induces vascular leakage in endothelial cells. PLoS One. 2012;7(7):e41932. doi:10.1371/journal.pone.0041932
  • Remy S, Gossez M, Belot A, et al. Massive increase in monocyte HLA-DR expression can be used to discriminate between septic shock and hemophagocytic lymphohistiocytosis-induced shock. Critl Care. 2018;22(1):1–2. doi:10.1186/s13054-018-2146-2
  • Pascarella A, Bracaglia C, Caiello I, et al. Monocytes from patients with macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis are hyperresponsive to interferon gamma. Front Immunol. 2021;12:801. doi:10.3389/fimmu.2021.663329
  • Ma T, Hudgins JP, Vergara‐Lluri M, Pham H, Brynes R, Shulman IA. Platelet transfusion refractoriness and thrombophagocytosis in an HIV/AIDS patient with hemophagocytic lymphohistiocytosis. Transfusion. 2020;60:2176–2177. doi:10.1111/trf.15955
  • Akashi K, Hayashi S, Gondo H, et al. Involvement of interferon‐γ and macrophage colony‐stimulating factor in pathogenesis of haemophagocytic lymphohistiocytosis in adults. Br J Haematol. 1994;87(2):243–250. doi:10.1111/j.1365-2141.1994.tb04905.x
  • Shimizu M, Inoue N, Mizuta M, Nakagishi Y, Yachie A. Characteristic elevation of soluble TNF receptor II: i ratio in macrophage activation syndrome with systemic juvenile idiopathic arthritis. Clin Exp Immunol. 2018;191(3):349–355. doi:10.1111/cei.13026
  • Billiau AD, Roskams T, Van Damme-lombaerts R, Matthys P, Wouters C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-γ-producing lymphocytes and IL-6-and TNF-α-producing macrophages. Blood. 2005;105(4):1648–1651. doi:10.1182/blood-2004-08-2997
  • Henzan T, Nagafuji K, Tsukamoto H, et al. Success with infliximab in treating refractory hemophagocytic lymphohistiocytosis. Am J Hematol. 2006;81(1):59–61. doi:10.1002/ajh.20462
  • Ideguchi H, Ohno S, Takase K, et al. Successful treatment of refractory lupus-associated haemophagocytic lymphohistiocytosis with infliximab. Rheumatology. 2007;46(10):1621–1622. doi:10.1093/rheumatology/kem205
  • McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. doi:10.1016/j.autrev.2020.102537
  • Satria RD, Huang T-W, Jhan M-K, et al. Increased TNF-α initiates cytoplasmic vacuolization in whole blood coculture with dengue virus. J Immunol Res. 2021;2021. doi:10.1155/2021/6654617
  • Nunes PR, Romão-Veiga M, Peraçoli JC, et al. Downregulation of CD163 in monocytes and its soluble form in the plasma is associated with a pro-inflammatory profile in pregnant women with preeclampsia. Immunol Res. 2019;67(2–3):194–201. doi:10.1007/s12026-019-09078-8
  • Masri MFB, Mantri CK, Rathore AP, John ALS. Peripheral serotonin causes dengue virus–induced thrombocytopenia through 5HT2 receptors. Blood. 2019;133:2325–2337.
  • Sun DS, King CC, Huang HS, et al. Antiplatelet autoantibodies elicited by dengue virus non‐structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost. 2007;5(11):2291–2299. doi:10.1111/j.1538-7836.2007.02754.x
  • Chao C-H, Wu W-C, Lai Y-C, et al. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4):e1007625. doi:10.1371/journal.ppat.1007625
  • Clarice CSH, Abeysuriya V, de Mel S, et al. Atypical lymphocyte count correlates with the severity of dengue infection. PLoS One. 2019;14(5):e0215061. doi:10.1371/journal.pone.0215061
  • Fadilah S, Sahrir S, Raymond A, Cheong S, Aziz JA, Sivagengei K. Quantitation of T lymphocyte subsets helps to distinguish dengue hemorrhagic fever from classic dengue fever during the acute febrile stage. Southeast Asian J Trop Med Public Health. 1999;30(4):710–717.
  • Joshi AA, Muneer F. Dynamics of differential count in dengue; 2018.
  • Ho T-S, Wang S-M, Lin Y-S, Liu -C-C. Clinical and laboratory predictive markers for acute dengue infection. J Biomed Sci. 2013;20(1):1–8. doi:10.1186/1423-0127-20-75
  • Achalkar GV. Dengue: a clinico-pathological study of 50 cases. J Evol Med Dent Sci. 2013;2(48):9380–9386. doi:10.14260/jemds/1626
  • Patel K, Patel D, Das V. Hematological parameters and its utility in dengue fever: a prospective study. Int J Sci Res. 2016;5:1077–1079.
  • Azeredo ELD, Monteiro RQ, De-oliveira Pinto LM. Thrombocytopenia in dengue: interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators Inflamm. 2015;2015:1–16. doi:10.1155/2015/313842
  • Giang HTN, Banno K, Minh LHN, et al. Dengue hemophagocytic syndrome: a systematic review and meta‐analysis on epidemiology, clinical signs, outcomes, and risk factors. Rev Med Virol. 2018;28(6):e2005. doi:10.1002/rmv.2005
  • Srichaikul T, Punyagupta S, Kanchanapoom T, Chanokovat C, Likittanasombat K, Leelasiri A. Hemophagocytic syndrome in Dengue hemorrhagic fever with severe multiorgan complications. J Med Assoc Thai. 2008;91(1):104–109.
  • Lu P-L, Hsiao -H-H, Tsai -J-J, et al. Dengue virus-associated hemophagocytic syndrome and dyserythropoiesis: a case report. Kaohsiung J Med Sci. 2005;21(1):34–39. doi:10.1016/S1607-551X(09)70274-8
  • Ansuini V, Rigante D, Esposito S. Debate around infection-dependent hemophagocytic syndrome in paediatrics. BMC Infect Dis. 2013;13(1):1–8. doi:10.1186/1471-2334-13-15
  • Mroczek E, Weisenburger D, Grierson HL, Markin R, Purtilo D. Fatal infectious mononucleosis and virus-associated hemophagocytic syndrome. Arch Pathol Lab Med. 1987;111:530–535.
  • Janka G, Imashuku S, Elinder G, Schneider M, Henter J-I. Infection-and malignancy-associated hemophagocytic syndromes: secondary hemophagocytic lymphohistiocytosis. Hematol Oncol Clin North Am. 1998;12(2):435–444. doi:10.1016/S0889-8588(05)70521-9
  • Crayne CB, Albeituni S, Nichols KE, Cron RQ. The Immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi:10.3389/fimmu.2019.00119
  • Castillo L, Carcillo J. Secondary hemophagocytic lymphohistiocytosis and severe sepsis/systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatr Crit Care Med. 2009;10(3):387–392. doi:10.1097/PCC.0b013e3181a1ae08
  • Deane S, Selmi C, Teuber SS, Gershwin ME. Macrophage activation syndrome in autoimmune disease. Int Arch Allergy Immunol. 2010;153(2):109–120. doi:10.1159/000312628
  • Srikiatkhachorn A, Mathew A, Rothman AL. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol. 2017;39(5):563–574. doi:10.1007/s00281-017-0625-1
  • Mangione JN, Huy NT, Lan NTP, et al. The association of cytokines with severe dengue in children. Trop Med Health. 2014;42(4):137–144. doi:10.2149/tmh.2014-09
  • Sun Y, Jin C, Zhan F, et al. Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome. J Infect Dis. 2012;206(7):1085–1094. doi:10.1093/infdis/jis452
  • Patro A, Mohanty S, Prusty BK, et al. Cytokine signature associated with disease severity in dengue. Viruses. 2019;11(1):34. doi:10.3390/v11010034
  • Fernandez‐Mestre M, Gendzekhadze K, Rivas‐Vetencourt P, Layrisse Z. TNF‐α‐308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens. 2004;64(4):469–472. doi:10.1111/j.1399-0039.2004.00304.x
  • Vejbaesya S, Luangtrakool P, Luangtrakool K, et al. TNF and LTA gene, allele, and extended HLA haplotype associations with severe dengue virus infection in ethnic Thais. J Infect Dis. 2009;199:1442–1448. doi:10.1086/597422
  • Alagarasu K, Mulay A, Singh R, Gavade V, Shah P, Cecilia D. Association of HLA-DRB1 and TNF genotypes with dengue hemorrhagic fever. Hum Immunol. 2013;74(5):610–617. doi:10.1016/j.humimm.2013.01.027
  • Wang L, Chen R, Liu J, Kuo H, Kuo H, Yang KD. Implications of dynamic changes among tumor necrosis factor-alpha (TNF-alpha), membrane TNF receptor, and soluble TNF receptor levels in regard to the severity of dengue infection. Am J Trop Med Hyg. 2007;77(2):297. doi:10.4269/ajtmh.2007.77.297
  • Cardier JE, Mariño E, Romano E, et al. Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-α in endothelial cell damage in dengue. Cytokine. 2005;30(6):359–365. doi:10.1016/j.cyto.2005.01.021
  • Meena AA, Murugesan A, Sopnajothi S, et al. Increase of plasma TNF-α is associated with decreased levels of blood platelets in clinical dengue infection. Viral Immunol. 2020;33:54–60. doi:10.1089/vim.2019.0100
  • Arthur J, Shen Y, Gardiner E, et al. TNF receptor‐associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost. 2011;9(1):163–172. doi:10.1111/j.1538-7836.2010.04091.x
  • Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003;92(9):1041–1048. doi:10.1161/01.RES.0000070111.98158.6C
  • Piguet PF, Vesin C, Da Kan C. Activation of platelet caspases by TNF and its consequences for kinetics. Cytokine. 2002;18(4):222–230. doi:10.1006/cyto.2002.0889
  • Hart PH, Hunt EK, Bonder CS, Watson CJ, Finlay-Jones JJ. Regulation of surface and soluble TNF receptor expression on human monocytes and synovial fluid macrophages by IL-4 and IL-10. J Immunol. 1996;157(8):3672–3680.
  • Langstein J, Michel J, Fritsche J, Kreutz M, Andreesen R, Schwarz H. CD137 (ILA/4-1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J Immunol. 1998;160(5):2488–2494.
  • Leeuwenberg J, Dentener MA, Buurman WA. Lipopolysaccharide LPS-mediated soluble TNF receptor release and TNF receptor expression by monocytes. Role of CD14, LPS binding protein, and bactericidal/permeability-increasing protein. The. J Immunol. 1994;152:5070–5076.