325
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis, In Silico and Pharmacological Evaluation of New Thiazolidine-4-Carboxylic Acid Derivatives Against Ethanol-Induced Neurodegeneration and Memory Impairment

, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 3643-3660 | Published online: 25 Jun 2022

References

  • Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179–180. doi:10.1038/539179a
  • Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11(2):44. doi:10.3390/ph11020044
  • Di Stefano A, Reale M. Neurodegenerative disorders: synthesis, drug delivery strategies and biological evaluation of new therapeutic agents. Cent Nerv Syst Agents Med Chem. 2017;17(2):89. doi:10.2174/187152491702170712214058
  • Brettschneider J, Del Tredici K, Lee VMY, Trojanowski JQ. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16(2):109–120. doi:10.1038/nrn3887
  • Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 2018;21(10):1332–1340. doi:10.1038/s41593-018-0235-9
  • Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech. 2017;10:499–502. doi:10.1242/dmm.030205
  • Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28(33):8354–8360. doi:10.1523/JNEUROSCI.0616-08.2008
  • Vuong T, Mallet JF, Ouzounova M, et al. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. J Transl Med. 2016;14(1):1–12. doi:10.1186/s12967-016-0770-7
  • Mott M, Koroshetz W. Bridging the gap in neurotherapeutic discovery and development: the role of the National Institute of Neurological Disorders and Stroke in translational neuroscience. Neurotherapeutics. 2015;12(3):651–654. doi:10.1007/s13311-015-0366-6
  • Zhang H, Zhang J, Qu W, et al. Design, synthesis, and biological evaluation of novel thiazolidinone-containing quinoxaline-1, 4-di-N-oxides as antimycobacterial and antifungal agents. Front Chem. 2020;8:598. doi:10.3389/fchem.2020.00598
  • Lu Y, Li CM, Wang Z, et al. Discovery of 4-substituted methoxybenzoyl-aryl-thiazole as Novel Anticancer Agents: synthesis, biological evaluation, and structure− activity relationships. J Med Chem. 2009;52(6):1701–1711. doi:10.1021/jm801449a
  • Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated five-membered thiazolidines and their derivatives: from synthesis to biological applications. Top Curr Chem. 2020;378(2):1–90.
  • Makwana HR, Malani AH, Brief Review A. Article: thiazolidines derivatives and their pharmacological activities. J Appl Chem. 2017;10:76–84.
  • Apostolidis I, Liaras K, Geronikaki A, et al. Synthesis and biological evaluation of some 5-arylidene-2-(1, 3-thiazol-2-ylimino)-1, 3-thiazolidin-4-ones as dual anti-inflammatory/antimicrobial agents. Bioorg Med Chem. 2013;21(2):532–539. doi:10.1016/j.bmc.2012.10.046
  • Abdellatif KR, Abdelgawad MA, Elshemy HA, Alsayed SS. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem. 2016;64:1–12. doi:10.1016/j.bioorg.2015.11.001
  • Liu Y, Jing F, Xu Y, et al. Design, synthesis and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors. Bioorg Med Chem. 2011;19(7):2342–2348. doi:10.1016/j.bmc.2011.02.019
  • Zhang Q, Zhou H, Zhai S, Yan B. Natural product-inspired synthesis of thiazolidine and thiazolidinone compounds and their anticancer activities. Curr Pharm Des. 2010;16(16):1826–1842. doi:10.2174/138161210791208983
  • Jagtap RM, Thorat SH, Gonnade RG, Khan AA, Pardeshi SK. X-ray crystal structures and anti-breast cancer property of 3-tert-butoxycarbonyl-2-arylthiazolidine-4-carboxylic acids. New J Chem. 2018;42(2):1078–1086. doi:10.1039/C7NJ02961F
  • Das Neves AM, Berwaldt GA, Avila CT, et al. Synthesis of thiazolidin-4-ones and thiazinan-4-ones from 1-(2-aminoethyl) pyrrolidine as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):31–41. doi:10.1080/14756366.2019.1680659
  • Marc G, Stana A, Oniga SD, Pîrnău A, Vlase L, Oniga O. New phenolic derivatives of thiazolidine-2, 4-dione with antioxidant and antiradical properties: synthesis, characterization, in vitro evaluation, and quantum studies. Molecules. 2019;24(11):2060. doi:10.3390/molecules24112060
  • Lupaşcu F, Dragostin OM, Apotrosoaei M, et al. Synthesis and evaluation of antioxidant activity of some new benzylidene-thiazolidine-xanthine derivatives. Rev Med Chir Soc Med Nat Iasi. 2013;117:244–249.
  • Ham YH, Jason Chan KK, Chan W. Thioproline serves as an efficient antioxidant protecting human cells from oxidative stress and improves cell viability. Chem Res Toxicol. 2020;33(7):1815–1821. doi:10.1021/acs.chemrestox.0c00055
  • Jagtap RM, Pardeshi SK. Antioxidant activity screening of a series of synthesized 2-aryl thiazolidine-4-carboxylic acids. Der Pharm Lett. 2014;6(3):137–145.
  • Yan Y, Wan-Shun L, Bao-Qin H, Hai-Zhou S. Antioxidative properties of a newly synthesized 2-glucosamine-thiazolidine-4 (R)-carboxylic acid (GlcNH2Cys) in mice. Nutr Res. 2006;26(7):369–377. doi:10.1016/j.nutres.2006.06.014
  • Gomathy S, Singh G, Gowramma B, Antony AS, Elango K. Synthesis and anti-Parkinson’s screening of some novel 2-(naphthalen-1-yl)-N-[2-substituted (4-oxothiazolidin-3-yl)] acetamide derivatives. Int J Health Allied Sci. 2012;1(4):244–248. doi:10.4103/2278-344X.107871
  • Wang Y, Zhao W, Li G, et al. Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons in vivo and in vitro in Parkinson’s disease. PPAR Res. 2017;2017:1–12. doi:10.1155/2017/4089214
  • Sadashiva CT, Chandra JNS, Kavitha CV, Thimmegowda A, Subhash MN, Rangappa KS. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Eur J Med Chem. 2009;44(12):4848–4854. doi:10.1016/j.ejmech.2009.07.026
  • Zhao L, Huang W, Liu H, et al. FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5, 5-dimethyl-2-(4-thiazolidine) carboxylates. J Med Chem. 2006;49(14):4059–4071. doi:10.1021/jm0502384
  • Gandini A, Bartolini M, Tedesco D, et al. Tau-centric multitarget approach for Alzheimer’s disease: development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J Med Chem. 2018;61(17):7640–7656. doi:10.1021/acs.jmedchem.8b00610
  • Kumar B, Mantha AK, Kumar V, Kumar V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv. 2016;6(48):42660–42683. doi:10.1039/C6RA00302H
  • Zhang YF, Zou XL, Jun WU, Yu XQ, Yang X. Rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-γ agonist, attenuates inflammation via NF-κB inhibition in lipopolysaccharide-induced peritonitis. Inflammation. 2015;38(6):2105–2115. doi:10.1007/s10753-015-0193-2
  • Kaplan J, Nowell M, Chima R, Zingarelli B. Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun. 2014;20(5):519–528. doi:10.1177/1753425913501565
  • Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-induced neurodegeneration and glial activation in the developing brain. Brain Sci. 2016;6(3):31. doi:10.3390/brainsci6030031
  • Al Kury LT, Zeb A, Abidin ZU, et al. Neuroprotective effects of melatonin and celecoxib against ethanol-induced neurodegeneration: a computational and pharmacological approach. Drug Des Devel Ther. 2019;13:2715. doi:10.2147/DDDT.S207310
  • Ali T, Rehman SU, Shah FA, Kim MO. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation. 2018;15(1):1–19. doi:10.1186/s12974-018-1157-x
  • Imran M, Al Kury LT, Nadeem H, et al. Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules. 2020;10(1):108. doi:10.3390/biom10010108
  • Yin J, Valin KL, Dixon ML, Leavenworth JW. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res. 2017;2017:1–12. doi:10.1155/2017/5150678
  • Rao JS, Rapoport SI, Kim HW. Altered neuroinflammatory, arachidonic acid cascade and synaptic markers in postmortem Alzheimer’s disease brain. Transl Psychiatry. 2011;1(8):e31–e31. doi:10.1038/tp.2011.27
  • Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010;120(1–3):245–248. doi:10.1016/j.jad.2009.04.027
  • Menachem-Zidon OB, Goshen I, Kreisel T, et al. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology. 2008;33(9):2251–2262. doi:10.1038/sj.npp.1301606
  • Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008;13(7):717–728. doi:10.1038/sj.mp.4002055
  • Yirmiya R, Pollak Y, Morag M, et al. Illness, cytokines, and depression. Ann N Y Acad Sci. 2000;917(1):478–487. doi:10.1111/j.1749-6632.2000.tb05412.x
  • Eckardt MJ, File SE, Gessa GL, et al. Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res. 1998;22(5):998–1040. doi:10.1111/j.1530-0277.1998.tb03695.x
  • Reddy VD, Padmavathi P, Kavitha G, Saradamma B, Varadacharyulu N. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol Cell Biochem. 2013;375(1):39–47. doi:10.1007/s11010-012-1526-1
  • Vallés SL, Blanco AM, Pascual M, Guerri C. Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol. 2004;14(4):365–371. doi:10.1111/j.1750-3639.2004.tb00079.x
  • Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–247. doi:10.1038/ni.1703
  • Gong Z, Pan J, Shen Q, Li M, Peng Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018;15(1):1–17. doi:10.1186/s12974-018-1282-6
  • Toma C, Higa N, Koizumi Y, et al. Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-κB signaling. J Immunol. 2010;184(9):5287–5297. doi:10.4049/jimmunol.0903536
  • Qiao Y, Wang P, Qi J, Zhang L, Gao C. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 2012;586(7):1022–1026. doi:10.1016/j.febslet.2012.02.045
  • Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–1153. doi:10.1016/j.immuni.2013.05.016
  • Jiang H, Yan Y, Jiang W, Zhou R. NLRP3 inflammasome: activation, regulation, and role in diseases. Sci Sin. 2017;47(1):125–131.
  • Laudien R, Yoshida I, Nagamura T. Synthesis and photophysical properties of porphyrins containing viologen units for ultrafast molecular photonics. J Chem Soc Perkin Trans. 2002;2(10):1772–1777. doi:10.1039/B202991J
  • Abbas Q, Ashraf Z, Hassan M, et al. Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies. Drug Des Devel Ther. 2017;11:2029. doi:10.2147/DDDT.S137550
  • Shoaib M, Shah A, Wadood S, et al. In Vitro Enzyme Inhibition Potentials and Antioxidant Activity of Synthetic Flavone Derivatives. J Chem. 2015;2015:1–7. doi:10.1155/2015/516878
  • Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D‐galactose‐induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF‐KB/JNK signaling pathway in aging mouse model. J Pineal Res. 2015;58(1):71–85. doi:10.1111/jpi.12194
  • Khan A, Shal B, Naveed M, et al. Matrine ameliorates anxiety and depression-like behaviour by targeting hyperammonemia-induced neuroinflammation and oxidative stress in CCl4 model of liver injury. Neurotoxicology. 2019;72:38–50. doi:10.1016/j.neuro.2019.02.002
  • Kurban S, Deniz NG, Sayil C, et al. Synthesis, antimicrobial properties, and inhibition of catalase activity of 1, 4-naphtho-and benzoquinone derivatives containing N-, S-, O-substituted. Heteroat Chem. 2019;2019:1–12. doi:10.1155/2019/1658417
  • Shah FA, Park DJ, Koh PO. Identification of proteins differentially expressed by quercetin treatment in a middle cerebral artery occlusion model: a proteomics approach. Neurochem Res. 2018;43(8):1608–1623. doi:10.1007/s11064-018-2576-x
  • Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360–372. doi:10.1021/ci200454v
  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminformatics. 2011;3(1):1–14.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.21334
  • Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: a review. Eur J Med Chem. 2019;178:687–704. doi:10.1016/j.ejmech.2019.06.010
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74. doi:10.1016/j.ejmech.2015.04.040
  • Van der Schyf CJ. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert Rev Clin Pharmacol. 2011;4(3):293–298. doi:10.1586/ecp.11.13
  • Lindqvist D, Dhabhar FS, James SJ, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology. 2017;76:197–205. doi:10.1016/j.psyneuen.2016.11.031
  • Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201–205. doi:10.1124/jpet.116.237503
  • Wang XK, Sun T, Li YJ, et al. A novel thiazolidinediones ATZD2 rescues memory deficits in a rat model of type 2 diabetes through antioxidant and antiinflammation. Oncotarget. 2017;8(64):107409. doi:10.18632/oncotarget.22467
  • Ganguly U, Kaur U, Chakrabarti SS, et al. Oxidative stress, neuroinflammation, and NADPH oxidase: implications in the pathogenesis and treatment of Alzheimer’s disease. Oxid Med Cell Longev. 2021;2021:1–19. doi:10.1155/2021/7086512
  • He J, Zhu G, Wang G, Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid Med Cell Longev. 2020;2020:1–12. doi:10.1155/2020/6137521
  • Hassanzadeh K, Rahimmi A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: could targeting these pathways write a good ending? J Cell Physiol. 2019;234(1):23–32. doi:10.1002/jcp.26865
  • Gu F, Zhu M, Shi J, Hu Y, Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008;440(1):44–48. doi:10.1016/j.neulet.2008.05.050
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23(1):134–147. doi:10.1016/S0891-5849(96)00629-6
  • Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. 2020;21(19):7152. doi:10.3390/ijms21197152
  • Bayram FEÖ, Sipahi H, Acar ET, Ulugöl RK, Buran K, Akgün H. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids. Eur J Med Chem. 2016;114:337–344. doi:10.1016/j.ejmech.2016.03.019
  • Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long‐term behavioural alterations in adolescent rats. Eur J Neurosci. 2007;25(2):541–550. doi:10.1111/j.1460-9568.2006.05298.x
  • Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol. 2008;9(8):857–865. doi:10.1038/ni.1636
  • Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62(1):194–204. doi:10.2337/db12-0420
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi:10.1089/ars.2012.5149
  • Samuelsson M, Fisher L, Iverfeldt K. β-Amyloid and interleukin-1β induce persistent NF-κB activation in rat primary glial cells. Int J Mol Med. 2005;16(3):449–453.
  • Shah FA, Kury LA, Li T, et al. Polydatin attenuates neuronal loss via reducing neuroinflammation and oxidative stress in rat MCAO models. Front Pharmacol. 2019;10:663. doi:10.3389/fphar.2019.00663
  • Bortolato B, Carvalho A F, K Soczynska J, et al. The involvement of TNF-α in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Curr Neuropharmacol. 2015;13(5):558–576. doi:10.2174/1570159X13666150630171433