119
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Therapeutic Effects of Retinoic Acid in Lipopolysaccharide-Induced Cardiac Dysfunction: Network Pharmacology and Experimental Validation

ORCID Icon, , , , ORCID Icon &
Pages 4963-4979 | Published online: 30 Aug 2022

References

  • Qian M, Lou Y, Wang Y, et al. PICK1 deficiency exacerbates sepsis-associated acute lung injury and impairs glutathione synthesis via reduction of xCT. Free Radic Biol Med. 2018;1(18):23–34. doi:10.1016/j.freeradbiomed.2018.02.028
  • Fernando SM, Rochwerg B, Seely A. Clinical implications of the third international consensus definitions for sepsis and septic shock (Sepsis-3). CMAJ. 2018;36(190):E1058–9. doi:10.1503/cmaj.170149
  • Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;6(18):424–434. doi:10.1038/s41569-020-00492-2
  • Weiss SL, Cvijanovich NZ, Allen GL, et al. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock. Crit Care. 2014;6(18):623. doi:10.1186/s13054-014-0623-9
  • Meyer NJ. Finding a needle in the haystack: leveraging bioinformatics to identify a functional genetic risk factor for sepsis death. Crit Care Med. 2015;1(43):242–243. doi:10.1097/CCM.0000000000000664
  • Burnham KL, Davenport EE, Radhakrishnan J, et al. Shared and distinct aspects of the sepsis transcriptomic response to fecal peritonitis and pneumonia. Am J Respir Crit Care Med. 2017;3(196):328–339. doi:10.1164/rccm.201608-1685OC
  • Scicluna BP, van Vught LA, Zwinderman AH, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;10(5):816–826.
  • Jia L, Wang Y, Wang Y, et al. Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase. Circ Res. 2018;11(122):1532–1544. doi:10.1161/CIRCRESAHA.118.312910
  • Smeding L, Plotz FB, Groeneveld AB, et al. Structural changes of the heart during severe sepsis or septic shock. Shock. 2012;5(37):449–456. doi:10.1097/SHK.0b013e31824c3238
  • Vanasco V, Saez T, Magnani ND, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med. 2014;77:1–9. doi:10.1016/j.freeradbiomed.2014.08.009
  • Wagner S, Schurmann S, Hein S, et al. Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res Cardiol. 2015;5(110):507. doi:10.1007/s00395-015-0507-4
  • Schilling J, Lai L, Sambandam N, et al. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor gamma coactivator-1 signaling. Circ Heart Fail. 2011;4(4):474–482. doi:10.1161/CIRCHEARTFAILURE.110.959833
  • Ziolo MT, Katoh H, Bers DM. Expression of inducible nitric oxide synthase depresses beta-adrenergic-stimulated calcium release from the sarcoplasmic reticulum in intact ventricular myocytes. Circulation. 2001;24(104):2961–2966. doi:10.1161/hc4901.100379
  • Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol. 2016;81(Pt B(81)):307–314. doi:10.1016/j.biocel.2016.07.032
  • Nurrahmah QI, Madhyastha R, Madhyastha H, et al. Retinoic acid abrogates LPS-induced inflammatory response via negative regulation of NF-kappa B/miR-21 signaling. Immunopharmacol Immunotoxicol. 2021;3(43):299–308. doi:10.1080/08923973.2021.1902348
  • Li S, Lei Y, Lei J, et al. All-trans retinoic acid promotes macrophage phagocytosis and decreases inflammation via inhibiting CD14/TLR4 in acute lung injury. Mol Med Rep. 2021;24(6). doi:10.3892/mmr.2021.12508
  • Austenaa LM, Carlsen H, Hollung K, et al. Retinoic acid dampens LPS-induced NF-kappaB activity: results from human monoblasts and in vivo imaging of NF-kappaB reporter mice. J Nutr Biochem. 2009;9(20):726–734. doi:10.1016/j.jnutbio.2008.07.002
  • Martire-Greco D, Landoni VI, Chiarella P, et al. all-trans-retinoic acid improves immunocompetence in a murine model of lipopolysaccharide-induced immunosuppression. Clin Sci. 2014;5(126):355–365. doi:10.1042/CS20130236
  • Tang M, Xie X, Yi P, et al. Integrating network pharmacology with molecular docking to unravel the active compounds and potential mechanism of simiao pill treating rheumatoid arthritis. Evid Based Complement Alternat Med. 2020;2020:5786053. doi:10.1155/2020/5786053
  • Liu Z, Huo JH, Dong WT, et al. A study based on metabolomics, network pharmacology, and experimental verification to explore the mechanism of qinbaiqingfei concentrated pills in the treatment of mycoplasma pneumonia. Front Pharmacol. 2021;12:761883. doi:10.3389/fphar.2021.761883
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;11(4):682–690. doi:10.1038/nchembio.118
  • Recanatini M, Cabrelle C. Drug research meets network science: where are we? J Med Chem. 2020;16(63):8653–8666. doi:10.1021/acs.jmedchem.9b01989
  • Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;10(25):1110–1111. doi:10.1038/nbt1007-1110
  • Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol. 2013;1(145):1–10. doi:10.1016/j.jep.2012.09.051
  • Fang J, Liu C, Wang Q, et al. In silico polypharmacology of natural products. Brief Bioinform. 2018;6(19):1153–1171. doi:10.1093/bib/bbx045
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue(41)):D991–5. doi:10.1093/nar/gks1193
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;7(43):e47. doi:10.1093/nar/gkv007
  • Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1(49)):D1388–95. doi:10.1093/nar/gkaa971
  • Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44(D1(44)):D380–4. doi:10.1093/nar/gkv1277
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;1(25):25–29. doi:10.1038/75556
  • Li S, Li L, Meng X, et al. DREAM: a database of experimentally supported protein-coding RNAs and drug associations in human cancer. Mol Cancer. 2021;1(20):148. doi:10.1186/s12943-021-01436-1
  • Altermann E, Klaenhammer TR. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genom. 2005;6:60. doi:10.1186/1471-2164-6-60
  • Backes C, Keller A, Kuentzer J, et al. GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35(Web Server issue(35)):W186–92. doi:10.1093/nar/gkm323
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1(47)):D607–13. doi:10.1093/nar/gky1131
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;11(13):2498–2504. doi:10.1101/gr.1239303
  • Liu C, He D, Zhao Q. Licoricidin improves neurological dysfunction after traumatic brain injury in mice via regulating FoxO3/Wnt/beta-catenin pathway. J Nat Med. 2020;4(74):767–776. doi:10.1007/s11418-020-01434-5
  • Chen Y, Tang J, Zhang Y, et al. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(12):2517-2527. doi:10.1007/s00210-020-01861-x
  • Deng C, Zhang B, Zhang S, et al. Low nanomolar concentrations of Cucurbitacin-I induces G2/M phase arrest and apoptosis by perturbing redox homeostasis in gastric cancer cells in vitro and in vivo. Cell Death Dis. 2016;7:e2106. doi:10.1038/cddis.2016.13
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;8(315):801–810. doi:10.1001/jama.2016.0287
  • Drosatos K, Lymperopoulos A, Kennel PJ, et al. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep. 2015;2(12):130–140. doi:10.1007/s11897-014-0247-z
  • Rossol M, Heine H, Meusch U, et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol. 2011;5(31):379–446. doi:10.1615/critrevimmunol.v31.i5.20
  • Drott PW, Meurling S, Kulander L, et al. Effects of vitamin A on endotoxaemia in rats. Eur J Surg. 1991;10(157):565–569.
  • Slade E, Tamber PS, Vincent JL. The surviving sepsis campaign: raising awareness to reduce mortality. Crit Care. 2003;1(7):1–2. doi:10.1186/cc1876
  • Carcillo JA. Reducing the global burden of sepsis in infants and children: a clinical practice research agenda. Pediatr Crit Care Med. 2005;3(Suppl(6)):S157–64. doi:10.1097/01.PCC.0000161574.36857.CA
  • Eriksson M, Lundkvist K, Drott P, et al. Beneficial effects of pre-treatment with vitamin A on cardiac and pulmonary functions in endotoxaemic pigs. Acta Anaesthesiol Scand. 1996;5(40):538–548. doi:10.1111/j.1399-6576.1996.tb04485.x
  • Kibble M, Saarinen N, Tang J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;8(32):1249–1266. doi:10.1039/c5np00005j
  • Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;7(23):351–363. doi:10.1016/j.tem.2012.05.001
  • Choo J, Lee Y, Yan XJ, et al. A Novel Peroxisome Proliferator-activated Receptor (PPAR) gamma agonist 2-hydroxyethyl 5-chloro-4,5-didehydrojasmonate exerts anti-inflammatory effects in colitis. J Biol Chem. 2015;42(290):25609–25619. doi:10.1074/jbc.M115.673046
  • Kilu W, Merk D, Steinhilber D, et al. Heterodimer formation with retinoic acid receptor RXRalpha modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARgamma. J Biol Chem. 2021;1(297):100814. doi:10.1016/j.jbc.2021.100814
  • Feingold K, Kim MS, Shigenaga J, et al. Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab. 2004;2(286):E201–7. doi:10.1152/ajpendo.00205.2003
  • Standage SW, Waworuntu RL, Delaney MA, et al. Nonhematopoietic peroxisome proliferator-activated receptor-alpha protects against cardiac injury and enhances survival in experimental polymicrobial sepsis. Crit Care Med. 2016;8(44):e594–603. doi:10.1097/CCM.0000000000001585
  • Amoutzias GD, Pichler EE, Mian N, et al. A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network. BMC Syst Biol. 2007;1:34. doi:10.1186/1752-0509-1-34
  • Jamsa J, Huotari V, Savolainen ER, et al. Kinetics of leukocyte CD11b and CD64 expression in severe sepsis and non-infectious critical care patients. Acta Anaesthesiol Scand. 2015;7(59):881–891. doi:10.1111/aas.12515
  • Sheneef A, Mohamed T, Boraey NF, et al. Neutrophil CD11b, CD64 and lipocalin-2: early diagnostic markers of neonatal sepsis. Egypt J Immunol. 2017;1(24):29–36.
  • Zhou H, Li Y, Gui H, et al. Antagonism of integrin CD11b affords protection against endotoxin shock and polymicrobial sepsis via attenuation of HMGB1 nucleocytoplasmic translocation and extracellular release. J Immunol. 2018;5(200):1771–1780. doi:10.4049/jimmunol.1701285
  • Hoshi M, Osawa Y, Ito H, et al. Blockade of indoleamine 2,3-dioxygenase reduces mortality from peritonitis and sepsis in mice by regulating functions of CD11b+ peritoneal cells. Infect Immun. 2014;11(82):4487–4495. doi:10.1128/IAI.02113-14
  • Sim H, Jeong D, Kim HI, et al. CD11b deficiency exacerbates methicillin-resistant staphylococcus aureus-induced sepsis by upregulating inflammatory responses of macrophages. Immune Netw. 2021;21(2):e13. doi:10.4110/in.2021.21.e13
  • Duriancik DM, Hoag KA. Vitamin A deficiency alters splenic dendritic cell subsets and increases CD8(+) Gr-1(+) memory T lymphocytes in C57BL/6J mice. Cell Immunol. 2010;2(265):156–163. doi:10.1016/j.cellimm.2010.08.006
  • Gatto D, Wood K, Caminschi I, et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol. 2013;5(14):446–453. doi:10.1038/ni.2555
  • Beijer MR, Molenaar R, Goverse G, et al. A crucial role for retinoic acid in the development of Notch-dependent murine splenic CD8 − CD4 − and CD4 + dendritic cells. Eur J Immunol. 2013;6(43):1608–1616. doi:10.1002/eji.201343325
  • Yi T, Cyster JG. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. Elife. 2013;2:e757. doi:10.7554/eLife.00757
  • Lush CW, Cepinskas G, Kvietys PR. LPS tolerance in human endothelial cells: reduced PMN adhesion, E-selectin expression, and NF-kappaB mobilization. Am J Physiol Heart Circ Physiol. 2000;3(278):H853–61. doi:10.1152/ajpheart.2000.278.3.H853
  • Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci. 2003;12(24):640–647. doi:10.1016/j.tips.2003.10.004
  • van Meurs M, Wulfert FM, Knol AJ, et al. Early organ-specific endothelial activation during hemorrhagic shock and resuscitation. Shock. 2008;2(29):291–299. doi:10.1097/SHK.0b013e318145a7c1
  • Matsukawa A, Lukacs NW, Hogaboam CM, et al. Mice genetically lacking endothelial selectins are resistant to the lethality in septic peritonitis. Exp Mol Pathol. 2002;1(72):68–76. doi:10.1006/exmp.2001.2416
  • Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006;1(86):9–22. doi:10.1038/labinvest.3700366
  • Su CM, Cheng HH, Tsai TC, et al. Elevated serum vascular cell adhesion molecule-1 is associated with septic encephalopathy in adult community-onset severe sepsis patients. Biomed Res Int. 2014;2014:598762. doi:10.1155/2014/598762
  • Moser J, Heeringa P, Jongman RM, et al. Intracellular RIG-I signaling regulates TLR4-independent endothelial inflammatory responses to endotoxin. J Immunol. 2016;11(196):4681–4691. doi:10.4049/jimmunol.1501819
  • Gille J, Paxton LL, Lawley TJ, et al. Retinoic acid inhibits the regulated expression of vascular cell adhesion molecule-1 by cultured dermal microvascular endothelial cells. J Clin Invest. 1997;3(99):492–500. doi:10.1172/JCI119184
  • Lembo G, Rockman HA, Hunter JJ, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest. 1996;11(98):2648–2655. doi:10.1172/JCI119086
  • Ahasic AM, Tejera P, Wei Y, et al. Predictors of circulating insulin-like growth factor-1 and insulin-like growth factor-binding protein-3 in critical illness. Crit Care Med. 2015;12(43):2651–2659. doi:10.1097/CCM.0000000000001314
  • Barabutis N. Growth hormone releasing hormone in endothelial barrier function. Trends Endocrinol Metab. 2021;6(32):338–340. doi:10.1016/j.tem.2021.03.001
  • Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol a Biol Sci Med Sci. 2012;6(67):599–610. doi:10.1093/gerona/gls072
  • Wahlander H, Isgaard J, Jennische E, et al. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension. 1992;1(19):25–32. doi:10.1161/01.hyp.19.1.25
  • He H, Chang X, Gao J, et al. Salidroside mitigates sepsis-induced myocarditis in rats by regulating IGF-1/PI3K/Akt/GSK-3beta signaling. Inflammation. 2015;6(38):2178–2184. doi:10.1007/s10753-015-0200-7
  • Donohue TJ, Dworkin LD, Lango MN, et al. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation. 1994;2(89):799–809. doi:10.1161/01.cir.89.2.799
  • Shim JH, Shin DW, Lee TR, et al. The retinoic acid-induced up-regulation of insulin-like growth factor 1 and 2 is associated with prolidase-dependent collagen synthesis in UVA-irradiated human dermal equivalents. J Dermatol Sci. 2012;1(66):51–59. doi:10.1016/j.jdermsci.2011.12.008
  • Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;3(13):195–203. doi:10.1038/nrm3290
  • Hamzehzadeh L, Atkin SL, Majeed M, et al. The versatile role of curcumin in cancer prevention and treatment: a focus on PI3K/AKT pathway. J Cell Physiol. 2018;10(233):6530–6537. doi:10.1002/jcp.26620
  • Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell. 1997;4(88):435–437. doi:10.1016/s0092-8674(00)81883-8
  • Matsui T, Tao J, Del MF, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001;3(104):330–335. doi:10.1161/01.cir.104.3.330
  • Matsui T, Li L, Wu JC, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;25(277):22896–22901. doi:10.1074/jbc.M200347200
  • Debosch B, Sambandam N, Weinheimer C, et al. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem. 2006;43(281):32841–32851. doi:10.1074/jbc.M513087200
  • Roberts DJ, Tan-Sah VP, Smith JM, et al. Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes. J Biol Chem. 2013;33(288):23798–23806. doi:10.1074/jbc.M113.482026