275
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

The Application of Extracellular Vesicles Mediated miRNAs in Osteoarthritis: Current Knowledge and Perspective

, , ORCID Icon &
Pages 2583-2599 | Published online: 21 Apr 2022

References

  • van den Bosch MHJ. osteoarthritis year in review 2020: biology. Osteoarthritis Cartilage. 2021;29(2):143–150. doi:10.1016/j.joca.2020.10.006
  • Sharma L. Osteoarthritis of the knee. N Engl J Med. 2021;384:51–59. doi:10.1056/NEJMcp1903768
  • Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22–28. doi:10.1016/j.maturitas.2016.04.006
  • Fazio G, Vernuccio D, Di Gesaro G, et al. Obesity: a new pathology to pay attention to in young people. Curr Pharm Des. 2010;16(4):463–467. doi:10.2174/138161210790232167
  • Kushner RF, Choi SW. Prevalence of unhealthy lifestyle patterns among overweight and obese adults. Obes Silver Spring Md. 2010;18(6):1160–1167. doi:10.1038/oby.2009.376
  • Hunter DJ, Bierma Zeinstra S. Osteoarthritis. Lancet Lond Engl. 2019;393:1745–1759. doi:10.1016/S0140-6736(19)30417-9
  • Shang X, Böker KO, Taheri S, Hawellek T, Lehmann W, Schilling AF. The interaction between MicroRNAs and the Wnt/β-Catenin signaling pathway in osteoarthritis. Int J Mol Sci. 2021;22(18):1–16. doi:10.3390/ijms22189887
  • Arden NK, Perry TA, Bannuru RR, et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat Rev Rheumatol. 2021;17:59–66. doi:10.1038/s41584-020-00523-9
  • Gandhi R, Perruccio AV, Mahomed NN. Surgical management of hip osteoarthritis. CMAJ Can Med Assoc J. 2014;186:347–355. doi:10.1503/cmaj.121584
  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi:10.1016/j.jaci.2017.08.034
  • Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics. 2012;10(5):246–253. doi:10.1016/j.gpb.2012.07.005
  • Swingler TE, Niu L, Smith P, et al. The function of MicroRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol. 2019;37(Suppl 120):40–47.
  • Asahara H. Current status and strategy of MicroRNA research for cartilage development and osteoarthritis pathogenesis. J Bone Metab. 2016;23(3):121–127. doi:10.11005/jbm.2016.23.3.121
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of MRNAs and MicroRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi:10.1038/ncb1596
  • Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: a bright star of nanomedicine. Biomaterials. 2021;269:120467. doi:10.1016/j.biomaterials.2020.120467
  • Taheri S, Yoshida T, Böker KO, et al. Investigating the microchannel architectures inside the subchondral bone in relation to estimated hip reaction forces on the human femoral head. Calcif Tissue Int. 2021;1(5):510–524. doi:10.1007/s00223-021-00864-x
  • Kuang Y, Zheng X, Zhang L, et al. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of MiR-25. J Extracell Vesicles. 2020;10(1):1–20. doi:10.1002/jev2.12024
  • van Dommelen SM, Vader P, Lakhal S, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release Off J Control Release Soc. 2012;161(2):635–644. doi:10.1016/j.jconrel.2011.11.021
  • Zhang B, Tian X, Qu Z, Liu J, Yang L, Zhang W. Efficacy of extracellular vesicles from mesenchymal stem cells on osteoarthritis in animal models: a systematic review and meta-analysis. Nanomed. 2021;16:1297–1310. doi:10.2217/nnm-2021-0047
  • Song H, Zhao J, Cheng J, et al. Extracellular vesicles in chondrogenesis and cartilage regeneration. J Cell Mol Med. 2021;25(11):4883–4892. doi:10.1111/jcmm.16290
  • Mohd Noor NA, Abdullah Nurul A, Zain AM, Wan Nor MR, Aduni WK, Azlan M. Extracellular vesicles from mesenchymal stem cells as potential treatments for osteoarthritis. Cells. 2021;10(6):1–22. doi:10.3390/cells10061287
  • Hammaker D, Firestein GS. Epigenetics of inflammatory arthritis. Curr Opin Rheumatol. 2018;30(2):188–196. doi:10.1097/BOR.0000000000000471
  • Wu Y, Lu X, Shen B, Zeng Y. The therapeutic potential and role of MiRNA, LncRNA, and CircRNA in osteoarthritis. Curr Gene Ther. 2019;19(4):255–263. doi:10.2174/1566523219666190716092203
  • Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of MiRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836–1852. doi:10.1093/bib/bby054
  • Ng CY, Chai JY, Foo JB, et al. potential of exosomes as cell-free therapy in articular cartilage regeneration: a review. Int J Nanomed. 2021;16:6749–6781. doi:10.2147/IJN.S327059
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–289. doi:10.1146/annurev-cellbio-101512-122326
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi:10.1038/s41556-018-0250-9
  • Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):E307. doi:10.3390/cells8040307
  • Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014;3(1):26913. doi:10.3402/jev.v3.26913
  • Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750
  • Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of MicroRNAs. Stem Cell Res. Ther. 2018;9(1):320. doi:10.1186/s13287-018-1069-9
  • Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166(12):7309–7318. doi:10.4049/jimmunol.166.12.7309
  • Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41–51. doi:10.1016/j.semcdb.2015.02.010
  • Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Front Bioeng Biotechnol. 2020;8:575057. doi:10.3389/fbioe.2020.575057
  • Tan SSH, Tjio CKE, Wong JRY, et al. Mesenchymal stem cell exosomes for cartilage regeneration: a systematic review of preclinical in vivo studies. Tissue Eng Part B Rev. 2021;27(1):1–13. doi:10.1089/ten.TEB.2019.0326
  • de Almeida RC, Ramos YF, Mahfouz A, et al. RNA sequencing data integration reveals an MiRNA interactome of osteoarthritis cartilage. Ann Rheum Dis. 2019;78(2):270–277. doi:10.1136/annrheumdis-2018-213882
  • Kato T, Miyaki S, Ishitobi H, et al. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther. 2014;16(4):R163. doi:10.1186/ar4679
  • Gao K, Zhu W, Li H, et al. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol. 2020;30(4):758–764. doi:10.1080/14397595.2019.1651445
  • Taghiyar L, Jahangir S, Khozaei Ravari M, Shamekhi MA, Eslaminejad MB. Cartilage repair by mesenchymal stem cell-derived exosomes: preclinical and clinical trial update and perspectives. Adv Exp Med Biol. 2021;12:73–93. doi:10.1007/5584_2021_625
  • Ni Z, Kuang L, Chen H, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis. 2019;10(7):522. doi:10.1038/s41419-019-1739-2
  • Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2020;413:413–422. doi:10.1136/annrheumdis-2020-218089
  • Duan L, Xu X, Xu L, et al. Exosome-mediated drug delivery for cell-free therapy of osteoarthritis. Curr Med Chem. 2020. doi:10.2174/0929867327666201118161232
  • Goldie BJ, Dun MD, Lin M, et al. Activity-associated MiRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014;42(14):9195–9208. doi:10.1093/nar/gku594
  • Ferguson SW, Wang J, Lee CJ, et al. The MicroRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep. 2018;8(1):1419. doi:10.1038/s41598-018-19581-x
  • Borgovan T, Crawford L, Nwizu C, Quesenberry P. Stem cells and extracellular vesicles: biological regulators of physiology and disease. Am J Physiol Cell Physiol. 2019;317(2):C155–C166. doi:10.1152/ajpcell.00017.2019
  • Li X, Teng Y, Liu J, Lin H, Fan Y, Zhang X. Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. J Mater Chem B. 2017;5(26):5109–5119. doi:10.1039/c7tb01020f
  • Rong Y, Zhang J, Jiang D, et al. Hypoxic pretreatment of small extracellular vesicles mediates cartilage repair in osteoarthritis by delivering MiR-216a-5p. Acta Biomater. 2021;122:325–342. doi:10.1016/j.actbio.2020.12.034
  • Damia E, Chicharro D, Lopez S, et al. Adipose-derived mesenchymal stem cells: are they a good therapeutic strategy for osteoarthritis? Int J Mol Sci. 2018;19(7):E1926. doi:10.3390/ijms19071926
  • Ragni E, Colombini A, Viganò M, et al. Cartilage protective and immunomodulatory features of osteoarthritis synovial fluid-treated adipose-derived mesenchymal stem cells secreted factors and extracellular vesicles-embedded MiRNAs. Cells. 2021;10(5):1072. doi:10.3390/cells10051072
  • Yang Y, Zhu Z, Gao R, et al. Controlled release of MSC-derived small extracellular vesicles by an injectable Diels-Alder crosslinked hyaluronic Acid/PEG hydrogel for osteoarthritis improvement. Acta Biomater. 2021;128:163–174. doi:10.1016/j.actbio.2021.04.003
  • Jing H, Zhang X, Luo K, et al. MiR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1. Biomaterials. 2020;231:119682. doi:10.1016/j.biomaterials.2019.119682
  • Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27. doi:10.1016/j.biomaterials.2017.11.028
  • Ragni E, Papait A, Perucca Orfei C, et al. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-MiRNAs: anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med. 2021;10(7):1044–1062. doi:10.1002/sctm.20-0390
  • Wang K, Li F, Yuan Y, et al. Synovial mesenchymal stem cell-derived EV-Packaged MiR-31 downregulates histone demethylase KDM2A to prevent knee osteoarthritis. Mol Ther Nucleic Acids. 2020;22:1078–1091. doi:10.1016/j.omtn.2020.09.014
  • Wu J, Kuang L, Chen C, et al. MiR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of MTOR in osteoarthritis. Biomaterials. 2019;206:87–100. doi:10.1016/j.biomaterials.2019.03.022
  • Wang Y, He G, Guo Y, et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med. 2019;23:5475–5485. doi:10.1111/jcmm.14430
  • Cai J, Wu J, Wang J, et al. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci. 2020;10(1):69. doi:10.1186/s13578-020-00427-x
  • Li S, Stöckl S, Lukas C, et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating MiR-126-3p. Stem Cell Res Ther. 2021;12(1):252. doi:10.1186/s13287-021-02317-6
  • Tao S-C, Huang J-Y, Gao Y, et al. Small extracellular vesicles in combination with sleep-related CircRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioact Mater. 2021;6(12):4455–4469. doi:10.1016/j.bioactmat.2021.04.031
  • Qiu M, Liu D, Fu Q. MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci. 2021;269:118987. doi:10.1016/j.lfs.2020.118987
  • Chen X, Shi Y, Xue P, Ma X, Li J, Zhang J. Mesenchymal stem cell-derived exosomal MicroRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res Ther. 2020;22:256. doi:10.1186/s13075-020-02325-6
  • Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the MiR-124/NF-KB and MiR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med. 2020;24(18):10855–10865. doi:10.1111/jcmm.15714
  • Ragni E, Perucca Orfei C, De Luca P, et al. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-MiRNAs: the example of joint disease. Stem Cell Res Ther. 2020;11(1):165. doi:10.1186/s13287-020-01677-9
  • Zhao C, Chen J-Y, Peng W-M, Yuan B, Bi Q, Xu Y-J. Exosomes from adipose derived stem cells promote chondrogenesis and suppress inflammation by upregulating MiR 145 and MiR 221. Mol Med Rep. 2020;21(4):1881–1889. doi:10.3892/mmr.2020.10982
  • Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing MicroRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol. 2020;78:105946. doi:10.1016/j.intimp.2019.105946
  • Luo P, Jiang C, Ji P, Wang M, Xu J. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via MiR-100-5p/MTOR. Stem Cell Res Ther. 2019;10(1):216. doi:10.1186/s13287-019-1341-7
  • Sun H, Hu S, Zhang Z, Lun J, Liao W, Zhang Z. Expression of exosomal MicroRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem. 2019;120(1):171–181. doi:10.1002/jcb.27289
  • Wang R, Xu B, Xu H. TGF-Β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived MiR-135b. Cell Cycle Georget Tex. 2018;17. doi:10.1080/15384101.2018.1556063.
  • Tao S-C, Yuan T, Zhang Y-L, Yin W-J, Guo S-C, Zhang C-Q. Exosomes derived from MiR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180–195. doi:10.7150/thno.17133
  • Wu X, Wang Y, Xiao Y, Crawford R, Mao X, Prasadam I. Extracellular vesicles: potential role in osteoarthritis regenerative medicine. J Orthop Transl. 2020;21:73–80. doi:10.1016/j.jot.2019.10.012
  • Shang X, Böker KO, Taheri S, Lehmann W, Schilling AF. Extracellular vesicles allow epigenetic mechanotransduction between chondrocytes and osteoblasts. Int J Mol Sci. 2021;22(24):13282. doi:10.3390/ijms222413282
  • Peng S, Yan Y, Li R, Dai H, Xu J. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via MiR-1246 activation of the Wnt/β-Catenin pathway. Ann N Y Acad Sci. 2021;1503(1):48–59. doi:10.1111/nyas.14590
  • Zhou Y, Ming J, Li Y, et al. Exosomes derived from MiR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Discov. 2021;7(1):1–15. doi:10.1038/s41420-021-00418-y
  • Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. Osteoarthritic subchondral bone release exosomes that promote cartilage degeneration. Cells. 2021;10(2):251. doi:10.3390/cells10020251
  • Dai J, Dong R, Han X, et al. Osteoclast-derived exosomal Let-7a-5p targets smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol. 2020;319(1):C21–C33. doi:10.1152/ajpcell.00039.2020
  • Li Z, Wang Y, Xiang S, et al. Chondrocytes-derived exosomal MiR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. 2020;523:506–513. doi:10.1016/j.bbrc.2019.12.065
  • Mao G, Hu S, Zhang Z, et al. Exosomal MiR-95-5p Regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med. 2018;22(11):5354–5366. doi:10.1111/jcmm.13808
  • Hecht N, Johnstone B, Angele P, Walker T, Richter W. Mechanosensitive MiRs regulated by anabolic and catabolic loading of human cartilage. Osteoarthritis Cartilage. 2019;27(8):1208–1218. doi:10.1016/j.joca.2019.04.010
  • Stadnik PS, Gilbert SJ, Tarn J, et al. Regulation of MicroRNA-221, −222, −21 and −27 in articular cartilage subjected to abnormal compressive forces. J Physiol. 2021;599:143–155. doi:10.1113/JP279810
  • Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19:18. doi:10.1186/s13075-017-1229-9
  • Yuan XL, Meng HY, Wang YC, et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage. 2014;22:1077–1089. doi:10.1016/j.joca.2014.05.023
  • Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27(10):1347–1352. doi:10.1002/jor.20883
  • Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7:16214. doi:10.1038/s41598-017-15376-8
  • Munir J, Yoon JK, Ryu S. Therapeutic MiRNA-enriched extracellular vesicles: current approaches and future prospects. Cells. 2020;9(10):2271. doi:10.3390/cells9102271
  • De Bari C, Roelofs AJ. Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol. 2018;40:74–80. doi:10.1016/j.coph.2018.03.009
  • Hawkins KE, Corcelli M, Dowding K, et al. Embryonic stem cell-derived mesenchymal stem cells (MSCs) have a superior neuroprotective capacity over fetal MSCs in the hypoxic-ischemic mouse brain. Stem Cells Transl Med. 2018;7(5):439–449. doi:10.1002/sctm.17-0260
  • Ragni E, Banfi F, Barilani M, et al. Extracellular vesicle-shuttled MRNA in mesenchymal stem cell communication. STEM CELLS. 2017;35(4):1093–1105. doi:10.1002/stem.2557
  • Shao L, Zhang Y, Lan B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Bio Med Res Int. 2017;2017:4150705. doi:10.1155/2017/4150705
  • Zhang Y, Bi J, Huang J, Tang Y, Du S, Exosome: LP. A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine. 2020;15:6917–6934. doi:10.2147/IJN.S264498
  • Brennan K, Martin K, FitzGerald SP, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep. 2020;10:1039. doi:10.1038/s41598-020-57497-7
  • Koliha N, Wiencek Y, Heider U, et al. Bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5(1):29975. doi:10.3402/jev.v5.29975
  • Chen C, Skog J, Hsu C-H, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–511. doi:10.1039/b916199f
  • Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945. doi:10.3402/jev.v5.32945
  • Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells. 2020;9(9):E1955. doi:10.3390/cells9091955
  • Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for MicroRNA delivery for osteoarthritis treatment. Cell Mol Life Sci CMLS. 2021;78:79–91. doi:10.1007/s00018-020-03585-w
  • Hu X, Wu R, Shehadeh LA, et al. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells. BMC Genomics. 2014;15(1):303. doi:10.1186/1471-2164-15-303
  • Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair. Science. 2012;336:717–721. doi:10.1126/science.1215157
  • Szuplewski S, Kugler J-M, Lim SF, Verma P, Chen Y-W, Cohen SM. MicroRNA transgene overexpression complements deficiency-based modifier screens in drosophila. Genetics. 2012;190(2):617–626. doi:10.1534/genetics.111.136689
  • Jin HY, Gonzalez-Martin A, Miletic AV, et al. Transfection of MicroRNA mimics should be used with caution. Front Genet. 2015;6:340. doi:10.3389/fgene.2015.00340
  • Thomson DW, Bracken CP, Szubert JM, Goodall GJ. On measuring MiRNAs after transient transfection of mimics or antisense inhibitors. PLoS One. 2013;8:e55214. doi:10.1371/journal.pone.0055214
  • Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased MiR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405–414. doi:10.1038/ni1575
  • Kang SG, Liu W-H, Lu P, et al. MicroRNAs of the MiR-17 92 family are critical regulators of T (FH) differentiation. Nat Immunol. 2013;14:849–857. doi:10.1038/ni.2648
  • Jin HY, Oda H, Lai M, et al. MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J. 2013;32(17):2377–2391. doi:10.1038/emboj.2013.178
  • Wang R, Jiang W, Zhang L, et al. Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from MRL/MpJ superhealer mice enhances articular cartilage repair in a mouse injury model. Stem Cell Res Ther. 2020;11(1):93. doi:10.1186/s13287-020-01594-x
  • Webber J, Clayton A. How Pure Are Your Vesicles? J Extracell Vesicles. 2013;2(1):19861. doi:10.3402/jev.v2i0.19861
  • Paolini L, Zendrini A, Radeghieri A. Biophysical properties of extracellular vesicles in diagnostics. Biomark Med. 2018;12(4):383–391. doi:10.2217/bmm-2017-0458
  • Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 2021;269:120539. doi:10.1016/j.biomaterials.2020.120539
  • He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8(1):237–255. doi:10.7150/thno.21945
  • Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells. Mol Ther J Am Soc Gene Ther. 2013;21(1):185–191. doi:10.1038/mt.2012.180
  • Kim JE, Song D-H, Kim SH, Jung Y, Kim SJ. Development and characterization of various osteoarthritis models for tissue engineering. PLoS One. 2018;13(3):e0194288. doi:10.1371/journal.pone.0194288
  • He L, He T, Xing J, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020;11(1):276. doi:10.1186/s13287-020-01781-w
  • Zhang S, Teo KYW, Chuah SJ, et al. Temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019;200:35–47. doi:10.1016/j.biomaterials.2019.02.006
  • Ruiz M, Toupet K, Maumus M, Rozier P, Jorgensen C, Noël D. TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles. Biomaterials. 2020;226:119544. doi:10.1016/j.biomaterials.2019.119544
  • McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52(5):803–818. doi:10.1177/0300985815588611
  • Teeple E, Jay GD, Elsaid KA, Fleming BC. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J. 2013;15(2):438–446. doi:10.1208/s12248-013-9454-x
  • Little CB, Zaki S. What constitutes an “animal model of osteoarthritis”–the need for consensus? Osteoarthritis Cartilage. 2012;20(4):261–267. doi:10.1016/j.joca.2012.01.017
  • Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–499. doi:10.1016/j.knee.2011.07.005
  • Pedersen DR, Goetz JE, Kurriger GL, Martin JA. Comparative digital cartilage histology for human and common osteoarthritis models. Orthop Res Rev. 2013;2013(5):13–20. doi:10.2147/ORR.S38400
  • Pelletier J-P, Boileau C, Altman RD, Martel-Pelletier J. Experimental models of osteoarthritis: usefulness in the development of disease-modifying osteoarthritis drugs/agents. Therapy. 2010;7(6):621–634. doi:10.2217/thy.10.75
  • Woo CH, Kim HK, Jung GY, et al. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 2020;9(1):1735249. doi:10.1080/20013078.2020.1735249
  • Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020;21(18):E6466. doi:10.3390/ijms21186466
  • Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the MicroRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111(41):14888–14893. doi:10.1073/pnas.1408301111
  • Catalano M, O’Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2020;9(1):1703244. doi:10.1080/20013078.2019.1703244
  • Zeh N, Schneider H, Mathias S, et al. Human CAP cells represent a novel source for functional, MiRNA-loaded exosome production. PLoS One. 2019;14(8):e0221679. doi:10.1371/journal.pone.0221679
  • Cha JM, Shin EK, Sung JH, et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. 2018;8(1):1171. doi:10.1038/s41598-018-19211-6
  • Ludwig A-K, De Miroschedji K, Doeppner TR, et al. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles. 2018;7(1):1528109. doi:10.1080/20013078.2018.1528109
  • Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of MiRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3(1):23743. doi:10.3402/jev.v3.23743
  • Maehara M, Toyoda E, Takahashi T, Watanabe M, Sato M. Potential of exosomes for diagnosis and treatment of joint disease: towards a point-of-care therapy for osteoarthritis of the knee. Int J Mol Sci. 2021;22(5):2666. doi:10.3390/ijms22052666
  • Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal MiRNA in synovial fluid of patients with osteoarthritis. Sci Rep. 2017;7(1):2029. doi:10.1038/s41598-017-01905-y
  • Liu C, Li Y, Yang Z, Zhou Z, Lou Z, Zhang Q. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair. Nanomed. 2020;15(3):273–288. doi:10.2217/nnm-2019-0208
  • Xu T, Xu M, Bai J, et al. Tenocyte-derived exosomes induce the tenogenic differentiation of mesenchymal stem cells through TGF-β. Cytotechnology. 2019;71(1):57–65. doi:10.1007/s10616-018-0264-y
  • Bai J, Zhang Y, Zheng X, et al. LncRNA MM2P-induced, exosome-mediated transfer of sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis. 2020;11(9):763. doi:10.1038/s41419-020-02945-5
  • Tan F, Wang D, Yuan Z. The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the MiR-106b-5p/TIMP2 axis. Inflammation. 2020;43(4):1498–1509. doi:10.1007/s10753-020-01227-8