199
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Proteomic and Morphological Profiling of Mice Ocular Tissue During High-altitude Acclimatization Process: An Animal Study at Lhasa

, , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2835-2853 | Published online: 04 May 2022

References

  • Betge S, Drinda S, Neumann T, et al. Influence of macitentan on the vascular tone and recruitment of finger capillaries under hypobaric hypoxia in high altitude. High Alt Med Biol. 2020;21:336–345. doi:10.1089/ham.2019.0120
  • Sarkar S, Banerjee PK, Selvamurthy W. High altitude hypoxia: an intricate interplay of oxygen responsive macroevents and micromolecules. Mol Cell Biochem. 2003;253:287–305. doi:10.1023/A:1026080320034
  • Jha KN. High altitude and the eye. Asia Pac J Ophthalmol. 2012;1:166–169. doi:10.1097/APO.0b013e318253004e
  • Dhar P, Sharma VK, Hota KB, et al. Autonomic cardiovascular responses in acclimatized lowlanders on prolonged stay at high altitude: a longitudinal follow up study. PLoS One. 2014;9:e84274. doi:10.1371/journal.pone.0084274
  • Willmann G, Gekeler F, Schommer K, Bartsch P. Update on high altitude cerebral edema including recent work on the eye. High Alt Med Biol. 2014;15:112–122. doi:10.1089/ham.2013.1142
  • Luks AM, Swenson ER. Evaluating the risks of high altitude travel in chronic liver disease patients. High Alt Med Biol. 2015;16:80–88. doi:10.1089/ham.2014.1122
  • Gonzales GF, Tapia V. Increased levels of serum gamma-glutamyltransferase and uric acid on metabolic, hepatic and kidney parameters in subjects at high altitudes. J Basic Clin Physiol Pharmacol. 2015;26:81–87. doi:10.1515/jbcpp-2013-0162
  • Kayser B. Nutrition and high altitude exposure. Int J Sports Med. 1992;13(1):S129–132. doi:10.1055/s-2007-1024616
  • Zhang W, Jiao L, Liu R, et al. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS One. 2018;13:e0203701. doi:10.1371/journal.pone.0203701
  • Falla M, Papagno C, Dal Cappello T, et al. A prospective evaluation of the acute effects of high altitude on cognitive and physiological functions in lowlanders. Front Physiol. 2021;12:670278. doi:10.3389/fphys.2021.670278
  • Algaze I, Phillips L, Inglis P, et al. Incidence of mild cognitive impairment with ascending altitude. High Alt Med Biol. 2020;21:184–191. doi:10.1089/ham.2019.0111
  • Wilson MH, Davagnanam I, Holland G, et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol. 2013;73:381–389. doi:10.1002/ana.23796
  • Vats P, Singh VK, Singh SN, Singh SB. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels. Nutr Neurosci. 2007;10:243–249. doi:10.1080/10284150701722299
  • Davis C, Hackett P. Advances in the prevention and treatment of high altitude Illness. Emerg Med Clin North Am. 2017;35:241–260. doi:10.1016/j.emc.2017.01.002
  • Rennie D, Morrissey J. Retinal changes in Himalayan climbers. Arch Ophthalmol. 1975;93:395–400. doi:10.1001/archopht.1975.01010020409001
  • Gupta N, Prasad I, Himashree G, D’Souza P. Prevalence of dry eye at high altitude: a case controlled comparative study. High Alt Med Biol. 2008;9:327–334. doi:10.1089/ham.2007.1055
  • Bhandari SS, Koirala P, Regmi N, Pant S. Retinal hemorrhage in a high-altitude aid post volunteer doctor: a case report. High Alt Med Biol. 2017;18:285–287. doi:10.1089/ham.2017.0003
  • Canepa CA, Harris NS. Ultrasound in austere environments. High Alt Med Biol. 2019;20:103–111. doi:10.1089/ham.2018.0121
  • MacCormick IJ, Somner J, Morris DS, et al. Retinal vessel tortuosity in response to hypobaric hypoxia. High Alt Med Biol. 2012;13:263–268. doi:10.1089/ham.2011.1097
  • Li M, Tian X, Li X, et al. Diverse energy metabolism patterns in females in Neodon fuscus, Lasiopodomys brandtii, and Mus musculus revealed by comparative transcriptomics under hypoxic conditions. Sci Total Environ. 2021;783:147130. doi:10.1016/j.scitotenv.2021.147130
  • de Aquino Lemos V, Antunes HK, Dos Santos RV, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology. 2012;49:1298–1306. doi:10.1111/j.1469-8986.2012.01411.x
  • Ide WW. Central serous chorioretinopathy following hypobaric chamber exposure. Aviat Space Environ Med. 2014;85:1053–1055. doi:10.3357/ASEM.4073.2014
  • T. H, Guo H, Shen X, et al. Hypoxia-induced alteration of RNA modifications in the mouse testis and spermdagger. Biol Reprod. 2021;105:1171–1178. doi:10.1093/biolre/ioab142
  • Yilmaz A, Ratka J, Rohm I, et al. Decrease in circulating plasmacytoid dendritic cells during short-term systemic normobaric hypoxia. Eur J Clin Invest. 2016;46:115–122. doi:10.1111/eci.12416
  • Murray AJ. Energy metabolism and the high-altitude environment. Exp Physiol. 2016;101:23–27. doi:10.1113/EP085317
  • Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55:182–196. doi:10.1093/chromsci/bmw167
  • Kelly RT. Single-cell proteomics: progress and prospects. Mol Cell Proteomics. 2020;19:1739–1748. doi:10.1074/mcp.R120.002234
  • Cifani P, Kentsis A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics. 2017;17:1600079. doi:10.1002/pmic.201600079
  • Hosp F, Gutiérrez-ángel S, Schaefer MH, et al. Spatiotemporal proteomic profiling of huntington’s disease inclusions reveals widespread loss of protein function. Cell Rep. 2017;21:2291–2303. doi:10.1016/j.celrep.2017.10.097
  • Chang P, Niu Y, Zhang X, et al. Integrative proteomic and metabolomic analysis reveals metabolic phenotype in mice with cardiac-specific deletion of natriuretic peptide receptor A. Mol Cell Proteomics. 2021;20:100072. doi:10.1016/j.mcpro.2021.100072
  • Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21:268–283. doi:10.1038/s41580-020-0227-y
  • Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309. doi:10.1016/j.molcel.2010.09.022
  • Long P, Yan W, Liu J, et al. Therapeutic effect of traditional Chinese medicine on a rat model of branch retinal vein occlusion. J Ophthalmol. 2019;2019:9521379. doi:10.1155/2019/9521379
  • Long P, Yan W, He M, et al. Protective effects of hydrogen gas in a rat model of branch retinal vein occlusion via decreasing VEGF-alpha expression. BMC Ophthalmol. 2019;19:112. doi:10.1186/s12886-019-1105-2
  • He M, Long P, Yan W, et al. ALDH2 attenuates early-stage STZ-induced aged diabetic rats retinas damage via Sirt1/Nrf2 pathway. Life Sci. 2018;215:227–235. doi:10.1016/j.lfs.2018.10.019
  • Li L, Shi L, Yang S, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235. doi:10.1038/ncomms12235
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi:10.1038/nprot.2008.211
  • Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi:10.1093/nar/gkn923
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi:10.1093/nar/gkaa1074
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi:10.1093/nar/gky1131
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–1202. doi:10.1016/j.molp.2020.06.009
  • Long P, He M, Yan W, et al. ALDH2 protects naturally aged mouse retina via inhibiting oxidative stress-related apoptosis and enhancing unfolded protein response in endoplasmic reticulum. Aging. 2020;13:2750–2767. doi:10.18632/aging.202325
  • Toussaint CM, Kenefick RW, Petrassi FA, Muza SR, Charkoudian N:. Altitude, acute mountain sickness, and acetazolamide: recommendations for rapid ascent. High Alt Med Biol. 2021;22:5–13. doi:10.1089/ham.2019.0123
  • Dunnwald T, Gatterer H, Faulhaber M, Arvandi M, Schobersberger W. Body composition and body weight changes at different altitude levels: a systematic review and meta-analysis. Front Physiol. 2019;10:430. doi:10.3389/fphys.2019.00430
  • Kosaku K, Harada T, Jike T, Tsuboi I, Aizawa S. Long-term hypoxic tolerance in murine cornea. High Alt Med Biol. 2018;19:35–41. doi:10.1089/ham.2017.0114
  • Bosch MM, Barthelmes D, Merz TM, et al. New insights into changes in corneal thickness in healthy mountaineers during a very-high-altitude climb to Mount Muztagh Ata. Arch Ophthalmol. 2010;128:184–189. doi:10.1001/archophthalmol.2009.385
  • Patyal S, Arora A, Yadav A, Sharma VK. Corneal Thickness in Highlanders. High Alt Med Biol. 2017;18:56–60. doi:10.1089/ham.2016.0074
  • Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia. Invest Ophthalmol Vis Sci. 2019;60:3074–3083. doi:10.1167/iovs.18-26397
  • Jin P, Zou H, Zhu J, et al. Choroidal and retinal thickness in children with different refractive status measured by swept-source optical coherence tomography. Am J Ophthalmol. 2016;168:164–176. doi:10.1016/j.ajo.2016.05.008
  • Prousali E, Dastiridou A, Ziakas N, Androudi S, Mataftsi A. Choroidal thickness and ocular growth in childhood. Surv Ophthalmol. 2021;66:261–275. doi:10.1016/j.survophthal.2020.06.008
  • Mullner-Eidenbock A, Rainer G, Strenn K, Zidek T. High-altitude retinopathy and retinal vascular dysregulation. Eye. 2000;14(5):724–729. doi:10.1038/eye.2000.192
  • Bosch MM, Barthelmes D, Landau K. High altitude retinal hemorrhages–an update. High Alt Med Biol. 2012;13:240–244.
  • Mao H, Zhao Y, Li H, Lei L. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol. 2020;155:20–28. doi:10.1016/j.pbiomolbio.2020.04.001
  • Kajarabille N, Latunde-Dada GO. Programmed cell-death by ferroptosis: antioxidants as mitigators. Int J Mol Sci. 2019;20:4968. doi:10.3390/ijms20194968
  • Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27:41–53. doi:10.1016/j.blre.2012.12.003