305
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

The Emerging Role of the Interaction of Extracellular Vesicle and Autophagy—Novel Insights into Neurological Disorders

ORCID Icon, ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 3395-3407 | Published online: 09 Jun 2022

References

  • Zaborowski MP, Balaj L, Breakefield XO, et al. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience. 2015;65(8):783–797.
  • Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. doi:10.3402/jev.v4.27066
  • Van Niel G, d’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–228. doi:10.1038/nrm.2017.125
  • Subedi P, Schneider M, Philipp J, et al. Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal Biochem. 2019;584:113390. doi:10.1016/j.ab.2019.113390
  • Sharma P, Schiapparelli L, Cline HT. Exosomes function in cell-cell communication during brain circuit development. Curr Opin Neurobiol. 2013;23(6):997–1004. doi:10.1016/j.conb.2013.08.005
  • Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31(4):642–648. doi:10.1016/j.mcn.2005.12.003
  • Janas AM, Sapoń K, Janas T, et al. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta. 2016;1858(6):1139–1151. doi:10.1016/j.bbamem.2016.02.011
  • Kuang Y, Zheng X, Zhang L, et al. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles. 2020;10(1):e12024. doi:10.1002/jev2.12024
  • Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 2018;47(2):864–878.
  • Thompson AG, Gray E, Heman-Ackah SM, et al. Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers. Nat Rev Neurol. 2016;12(6):346–357. doi:10.1038/nrneurol.2016.68
  • Lee S, Mankhong S, Kang JH. Extracellular vesicle as a source of Alzheimer’s biomarkers: opportunities and challenges. Int J Mol Sci. 2019;20(7):1728.
  • Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol. 2018;6:128.
  • Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO Jl. 2017;36(13):1811–1836. doi:10.15252/embj.201796697
  • Mizushima N, Komatsu MJC. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741. doi:10.1016/j.cell.2011.10.026
  • Ponpuak M, Mandell MA, Kimura T, et al. Secretory autophagy. Curr Opin in Cell Biol. 2015;35:106–116. doi:10.1016/j.ceb.2015.04.016
  • Lehmann BD, Paine MS, Brooks AM, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–7871. doi:10.1158/0008-5472.CAN-07-6538
  • Akbar N, Azzimato V, Choudhury RP, et al. Extracellular vesicles in metabolic disease. Diabetologia. 2019;62(12):2179–2187. doi:10.1007/s00125-019-05014-5
  • Joshi BS, de Beer MA, Giepmans BNG, et al. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS nano. 2020;14(4):4444–4455. doi:10.1021/acsnano.9b10033
  • Marostica G, Gelibter S, Gironi M, et al. Extracellular vesicles in neuroinflammation. Front Cell Dev Biol. 2020;8:623039. doi:10.3389/fcell.2020.623039
  • Jin Q, Wu P, Zhou X, et al. Extracellular vesicles: novel roles in neurological disorders. Stem Cells Int. 2021;2021:6640836. doi:10.1155/2021/6640836
  • Todorova D, Simoncini S, Lacroix R, et al. Extracellular vesicles in angiogenesis. Circ Res. 2017;120(10):1658–1673. doi:10.1161/CIRCRESAHA.117.309681
  • Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6:22519. doi:10.1038/srep22519
  • Kalra H, Drummen GPC, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci. 2016;17(2):170. doi:10.3390/ijms17020170
  • Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1). doi:10.1042/BSR20180992
  • Meldolesi J. Exosomes and ectosomes in intercellular communication. Current Biol. 2018;28(8):R435–R444. doi:10.1016/j.cub.2018.01.059
  • Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci USA. 2019;116(32):16086–16094. doi:10.1073/pnas.1902513116
  • Men Y, Yelick J, Jin S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun. 2019;10(1):4136. doi:10.1038/s41467-019-11534-w
  • Gabrielli M, Battista N, Riganti L, et al. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep. 2015;16(2):213–220. doi:10.15252/embr.201439668
  • Casella G, Rasouli J, Boehm A, et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med. 2020;12(568). doi:10.1126/scitranslmed.aba0599.
  • Jin T, Gu J, Li Z, et al. Recent advances on extracellular vesicles in central nervous system diseases. Clin Interv Aging. 2021;16:257–274. doi:10.2147/CIA.S288415
  • Kalani MYS, Alsop E, Meechoovet B, et al. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J Extracell Vesicles. 2020;9(1):1713540. doi:10.1080/20013078.2020.1713540
  • Zheng X, Zhang L, Kuang Y, et al. Extracellular vesicles derived from neural progenitor cells–a preclinical evaluation for stroke treatment in mice. Transl Stroke Res. 2021;12(1):185–203. doi:10.1007/s12975-020-00814-z
  • Webb RL, Kaiser EE, Jurgielewicz BJ, et al. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke. 2018;49(5):1248–1256. doi:10.1161/STROKEAHA.117.020353
  • Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(3):747–753.
  • Lombardi M, Parolisi R, Scaroni F, et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol. 2019;138(6):987–1012. doi:10.1007/s00401-019-02049-1
  • Yin Q, Ji X, Lv R, et al. Targetting exosomes as a new biomarker and therapeutic approach for Alzheimer’s disease. Clin Interv Aging. 2020;15:195–205. doi:10.2147/CIA.S240400
  • Wang P, Shao B-Z, Deng Z, et al. Autophagy in ischemic stroke. Prog Neurobiol. 2018;163–164:98–117. doi:10.1016/j.pneurobio.2018.01.001
  • Sun Y, Zhu Y, Zhong X, et al. Crosstalk between autophagy and cerebral ischemia. Front Neurosci. 2018;12:1022. doi:10.3389/fnins.2018.01022
  • Mo Y, Sun Y, Liu K. Autophagy and inflammation in ischemic stroke. Neural Regen Res. 2020;15(8):1388–1396. doi:10.4103/1673-5374.274331
  • Liu J, Guo Z-N, Yan X-L, et al. Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci. 2020;14:577403. doi:10.3389/fncel.2020.577403
  • Xu W, Ocak U, Gao L, et al. Selective autophagy as a therapeutic target for neurological diseases. Cell Mol Life Sci. 2021;78(4):1369–1392. doi:10.1007/s00018-020-03667-9
  • Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27(6):421–429. doi:10.1247/csf.27.421
  • Ichimiya T, Yamakawa T, Hirano T, et al. Autophagy and autophagy-related diseases: a review. Int J Mol Sci. 2020;21(23):8974. doi:10.3390/ijms21238974
  • Li W, Li J, Bao J. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69(7):1125–1136. doi:10.1007/s00018-011-0865-5
  • Tasset I, Cuervo A. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283(13):2403–2413. doi:10.1111/febs.13677
  • Peker N, Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J Mol Biol. 2020;432(8):2560–2588. doi:10.1016/j.jmb.2020.01.017
  • Wei K, Wang P, Miao C. A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther. 2012;18(11):879–886. doi:10.1111/cns.12005
  • Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther. 2021;225:107848.
  • Wang M, Lee H, Elkin K, et al. Detrimental and beneficial effect of autophagy and a potential therapeutic target after ischemic stroke. Evid Based Complement Alternat Med. 2020;2020:8372647. doi:10.1155/2020/8372647
  • Li Q, Zhang T, Wang J, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun. 2014;444(2):182–188. doi:10.1016/j.bbrc.2014.01.032
  • Nabavi S, Sureda A, Sanches-Silva A, et al. Novel therapeutic strategies for stroke: the role of autophagy. Crit Rev Clin Lab Sci. 2019;56(3):182–199. doi:10.1080/10408363.2019.1575333
  • Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci. 2019;13:196. doi:10.3389/fncel.2019.00196
  • Rubinsztein D, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22. doi:10.4161/auto.1.1.1513
  • Rubinsztein D, Gestwicki JE, Murphy LO, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Dis. 2007;6(4):304–312. doi:10.1038/nrd2272
  • Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015–1034. doi:10.1016/j.neuron.2017.01.022
  • Chong Z, Shang YC, Wang S, et al. A critical kinase cascade in neurological disorders: PI 3-K, Akt, and mTOR. Future Neurol. 2012;7(6):733–748. doi:10.2217/fnl.12.72
  • Jung C, Ro S-H, Cao J, et al. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–1295. doi:10.1016/j.febslet.2010.01.017
  • Li W, Yu SP, Chen D, et al. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience. 2013;244:16–30. doi:10.1016/j.neuroscience.2013.03.045
  • Cho B, Choi SY, Park O-H, et al. Differential expression of BNIP family members of BH3-only proteins during the development and after axotomy in the rat. Mol Cells. 2012;33(6):605–610. doi:10.1007/s10059-012-0051-0
  • Xin X, Pan J, Wang X-Q, et al. 2-methoxyestradiol attenuates autophagy activation after global ischemia. Can J Neurol Sci. 2011;38(4):631–638. doi:10.1017/S031716710001218X
  • Jiang T, Harder B, Rojo de la Vega M, et al. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88:199–204. doi:10.1016/j.freeradbiomed.2015.06.014
  • Gerónimo-Olvera C, Massieu L. Autophagy as a homeostatic mechanism in response to stress conditions in the central nervous system. Mol Neurobiol. 2019;56(9):6594–6608. doi:10.1007/s12035-019-1546-x
  • Ogata M, S Hino, A Saito, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–9231. doi:10.1128/MCB.01453-06
  • Xu J, Camfield R, Gorski SM. The interplay between exosomes and autophagy–partners in crime. J Cell Sci. 2018;131(15):jcs215210. doi:10.1242/jcs.215210
  • Auger C, Christou N, Brunel A, et al. Autophagy and extracellular vesicles in colorectal cancer: interactions and common actors? Cancers. 2021;13(5):1039. doi:10.3390/cancers13051039
  • You L, Mao L, Wei J,et al. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J Hematol Oncol. 2017;10(1):1–9.
  • Fader C, Colombo MIJA. Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy. 2006;2(2):122–125. doi:10.4161/auto.2.2.2350
  • Fader CM, Sánchez D, Furlán M, et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 2008;9(2):230–250.
  • Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360–367. doi:10.1016/j.nbd.2011.01.029
  • Fussi N, Höllerhage M, Chakroun T, et al. Exosomal secretion of alpha-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis. 2018;9(7):757. doi:10.1038/s41419-018-0816-2
  • Liu J, Liu C, Zhang J, et al. A self-assembled alpha-synuclein nanoscavenger for parkinson’s disease. ACS Nano. 2020;14(2):1533–1549. doi:10.1021/acsnano.9b06453
  • Willen K, Edgar JR, Hasegawa T, et al. Abeta accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Mol Neurodegener. 2017;12(1):61. doi:10.1186/s13024-017-0203-y
  • Xin H, Katakowski M, Wang F, et al. Correction to: microRNA-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(5):e137. doi:10.1161/STR.0000000000000130
  • Ling D, Magallanes M, Salvaterra PM. Accumulation of amyloid-like Aβ 1–42 in AEL (Autophagy–endosomal–lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro. 2014;6(2):AN20130044. doi:10.1042/AN20130044
  • Saman S, Lee NCY, Inoyo I, et al. Proteins recruited to exosomes by tau overexpression implicate novel cellular mechanisms linking tau secretion with Alzheimer’s disease. J Alzheimers Dis. 2014;40 Suppl 1:S47–S70. doi:10.3233/JAD-132135
  • Ahmed ME, Iyer S, Thangavel R, et al. Co-localization of Glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J Alzheimers Dis. 2017;60(3):1143–1160.
  • Houtman J, Freitag K, Gimber N, et al. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP 3. EMBO J. 2019;38(4):e99430.
  • Kong SM, Chan BK, Park JS, et al. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes. Hum Mol Genet. 2014;23(11):2816–2833. doi:10.1093/hmg/ddu099
  • Danzer KM, Kranich LR, Ruf WP, et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener. 2012;7(1):1–18.
  • Guo M, Wang J, Zhao Y, et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain. 2020;143(5):1476–1497.
  • Doeppner TR, Herz J, Görgens A, et al. Extracellular vesicles improve post‐stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–1143. doi:10.5966/sctm.2015-0078
  • Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics. 2019;9(10):2910. doi:10.7150/thno.30879
  • Yang J, Zhang X, Chen X, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–287. doi:10.1016/j.omtn.2017.04.010
  • Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci. 2018;64(3):421–430. doi:10.1007/s12031-018-1041-2
  • Xia Y, Ling X, Hu G, et al. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem cell Res Ther. 2020;11(1):1–17.
  • Wang W, Li D-B, Li R-Y, et al. Diagnosis of hyperacute and acute ischaemic stroke: the potential utility of exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc Dis. 2018;45(5–6):204–212. doi:10.1159/000488365
  • Yang H-C, Zhang M, Wu R, et al. CC chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells. 2020;12(2):152.
  • Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res. 2019;382(2):111474. doi:10.1016/j.yexcr.2019.06.019
  • Zang J, Wu Y, Su X, et al. Inhibition of PDE1-B by vinpocetine regulates microglial exosomes and polarization through enhancing autophagic flux for neuroprotection against ischemic stroke. Front Cell Dev Biol. 2020;8:616590.
  • Chen W, Wang H, Zhu Z, et al. Exosome-Shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids. 2020;22:657–672.
  • Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle. 2020;19(8):906–917.
  • Bu X, Li D, Wang F, et al. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/mTOR signaling pathway and targeting CTSB. Neuropsychiatr Dis Treat. 2020;16:1863–1877. doi:10.2147/NDT.S260748
  • Jiang Y, Xie H, Tu W, et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p. Am J Transl Res. 2018;10(11):3529.
  • Gallart-Palau X, Guo X, Serra A, et al. Alzheimer’s disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther. 2020;12(1):54. doi:10.1186/s13195-020-00623-4
  • Scesa G, Moyano AL, Bongarzone ER, et al. Port-to-port delivery: mobilization of toxic sphingolipids via extracellular vesicles. J Neurosci Res. 2016;94(11):1333–1340. doi:10.1002/jnr.23798
  • Xu Z, Nan W, Zhang X, et al. Umbilical cord mesenchymal stem cells conditioned medium promotes Abeta25-35 phagocytosis by modulating autophagy and abeta-degrading enzymes in BV2 cells. J Mol Neurosci. 2018;65(2):222–233. doi:10.1007/s12031-018-1075-5
  • Cui G-H, Wu J, Mou F-F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 2018;32(2):654–668. doi:10.1096/fj.201700600R
  • Xia Y, Zhang G, Han C, et al. Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death Dis. 2019;10(3):174. doi:10.1038/s41419-019-1404-9
  • Zhou T, Lin D, Chen Y, et al. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics. 2019;11(15):1661–1677.
  • Li Q, Wang Z, Xing H, et al. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol Ther Nucleic Acids. 2021;23:1334–1344.
  • Fan RZ, Guo M, Luo S, et al. Exosome release and neuropathology induced by alpha-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta Neuropathol Commun. 2019;7(1):184. doi:10.1186/s40478-019-0821-4
  • Kim MJ, Deng H-X, Wong YC, et al. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26(4):729–741. doi:10.1093/hmg/ddw413
  • Underwood R, Wang B, Carico C, et al. The GTPase Rab27b regulates the release, autophagic clearance, and toxicity of alpha-synuclein. J Biol Chem. 2020;295(23):8005–8016. doi:10.1074/jbc.RA120.013337
  • Harischandra DS, Ghaisas S, Rokad D, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: relevance to alpha-synuclein misfolding in metal neurotoxicity. Neurotoxicology. 2018;64:267–277. doi:10.1016/j.neuro.2017.04.007
  • Li D, Huang S, Zhu J, et al. Exosomes from MiR-21-5p-increased neurons play a role in neuroprotection by suppressing Rab11a-mediated neuronal autophagy in vitro after traumatic brain injury. Med Sci Monitor. 2019;25:1871.
  • Li D, Huang S, Yin Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res. 2019;44(8):1903–1923.
  • Wang P, Ma H, Zhang Y, et al. Plasma exosome-derived microRNAs as novel biomarkers of traumatic brain injury in rats. Int J Med Sci. 2020;17(4):437. doi:10.7150/ijms.39667
  • Liu Q, Deng J, Qiu Y, et al. Non-coding RNA basis of muscle atrophy. Mol Ther Nucleic Acids. 2021;26:1066–1078. doi:10.1016/j.omtn.2021.10.010
  • Liao Y, Guo S, Liu G, et al. Host non-coding RNA regulates influenza A virus replication. Viruses. 2021;14(1):51. doi:10.3390/v14010051
  • Xin W, Wei W, Pan Y-L, et al. Modulating poststroke inflammatory mechanisms: novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells. 2021;13(8):1030–1048. doi:10.4252/wjsc.v13.i8.1030
  • Ge X, Lei P, Wang H-C, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;4:6718. doi:10.1038/srep06718
  • Ge X, Han Z, Chen F, et al. MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats. Brain Res. 2015;1603:150–157. doi:10.1016/j.brainres.2015.01.009
  • Liu Y, Li Y-P, Xiao L-M, et al. Extracellular vesicles derived from M2 microglia reduce ischemic brain injury through microRNA-135a-5p/TXNIP/NLRP3 axis. Lab Invest. 2021;101(7):837–850. doi:10.1038/s41374-021-00545-1
  • Gulati S, Palczewski K, Engel A, et al. Cryo-EM structure of phosphodiesterase 6 reveals insights into the allosteric regulation of type I phosphodiesterases. Sci Adv. 2019;5(2):eaav4322. doi:10.1126/sciadv.aav4322
  • Akira S, Nishio Y, Inoue M, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77(1):63–71. doi:10.1016/0092-8674(94)90235-6
  • You L, Wang Z, Li H, et al. The role of STAT3 in autophagy. Autophagy. 2015;11(5):729–739. doi:10.1080/15548627.2015.1017192
  • Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell. 2012;48(5):667–680. doi:10.1016/j.molcel.2012.09.013
  • Du Toit A. Autophagy: STAT3 maintains order. Nat Rev Mol Cell Biol. 2012;13(12):754. doi:10.1038/nrm3472
  • Yokoyama T, Kondo Y, Kondo S. Roles of mTOR and STAT3 in autophagy induced by telomere 3’ overhang-specific DNA oligonucleotides. Autophagy. 2007;3(5):496–498. doi:10.4161/auto.4602
  • Vassileff N, Cheng L, Hill AF. Hill, Extracellular vesicles–propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci. 2020;133(23):jcs243139. doi:10.1242/jcs.243139
  • Zheng J, Tan J, Miao -Y-Y, et al. Extracellular vesicles degradation pathway based autophagy lysosome pathway. Am J Transl Res. 2019;11(3):1170.