163
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Lupus Nephritis: Current Perspectives and Moving Forward

, & ORCID Icon
Pages 6533-6552 | Received 07 Oct 2022, Accepted 22 Nov 2022, Published online: 02 Dec 2022

References

  • Anders H-J, Saxena R, Zhao M-H, et al. Lupus nephritis. Nat Rev Dis Primers. 2020;6:7. doi:10.1038/s41572-019-0141-9
  • Anders H-J, Fogo AB. Immunopathology of lupus nephritis. Semin Immunopathol. 2014;36:443–459. doi:10.1007/s00281-013-0413-5
  • Lorenz G, Lech M, Anders H-J. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin Immunol. 2017;185:86–94. doi:10.1016/j.clim.2016.07.015
  • Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9):1400–1412. doi:10.1002/art.40930
  • Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT. Update on the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(1):14–25. doi:10.1136/annrheumdis-2020-218272
  • Steiger S, Rossaint J, Zarbock A, Anders H-J. Secondary Immunodeficiency Related to Kidney Disease (SIDKD)-definition, unmet need, and mechanisms. J Am Soc Nephrol. 2022;33:259–278.
  • Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease: monogenic lupus and beyond. J Clin Med. 2020;9:E712.
  • Guerra SG, Vyse TJ, Cunninghame Graham DS. The genetics of lupus: a functional perspective. Arthritis Res Ther. 2012;14:211. doi:10.1186/ar3844
  • Tiffin N, Adeyemo A, Okpechi I. A diverse array of genetic factors contribute to the pathogenesis of systemic lupus erythematosus. Orphanet J Rare Dis. 2013;8:2. doi:10.1186/1750-1172-8-2
  • Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6:683–692. doi:10.1038/nrrheum.2010.176
  • Kelley JM, Edberg JC, Kimberly RP. Pathways: strategies for susceptibility genes in SLE. Autoimmun Rev. 2010;9:473–476. doi:10.1016/j.autrev.2010.02.003
  • Rullo OJ, Tsao BP. Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis. 2013;72(Suppl 2):ii56–61. doi:10.1136/annrheumdis-2012-202351
  • Costa-Reis P, Sullivan KE. Genetics and epigenetics of systemic lupus erythematosus. Curr Rheumatol Rep. 2013;15:369. doi:10.1007/s11926-013-0369-4
  • Yang F, He Y, Zhai Z, Sun E. Programmed cell death pathways in the pathogenesis of systemic lupus erythematosus. J Immunol Res. 2019;3638562:2019.
  • Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol. 2017;185:59–73. doi:10.1016/j.clim.2016.08.010
  • Hepburn AL, Mason JC, Wang S, et al. Both Fcγ and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitro. Clin Exp Immunol. 2006;146(1):133–145. doi:10.1111/j.1365-2249.2006.03174.x
  • MacPherson M, Lek HS, Prescott A, Fagerholm SC. A systemic lupus erythematosus-associated R77H substitution in the CD11b chain of the Mac-1 integrin compromises leukocyte adhesion and phagocytosis. J Biol Chem. 2011;286:17303–17310. doi:10.1074/jbc.M110.182998
  • Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40:152–154. doi:10.1038/ng.71
  • Yang W, Tang H, Zhang Y, et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 2013;92:41–51. doi:10.1016/j.ajhg.2012.11.018
  • Harley JB, Alarcón-Riquelme ME, Criswell LA; International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40:204–210. doi:10.1038/ng.81
  • Freedman BI, Langefeld CD, Andringa KK, et al. End-stage renal disease in African Americans With Lupus Nephritis Is Associated With APOL1. Arthritis Rheumatol. 2014;66:390–396. doi:10.1002/art.38220
  • Zhou X, Lu X-L, Lv J-C, et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis. 2011;70:1330–1337. doi:10.1136/ard.2010.140111
  • Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–1036. doi:10.1038/nature03029
  • Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–1233. doi:10.1038/ng.468
  • Allam R, Anders H-J. The role of innate immunity in autoimmune tissue injury. Curr Opin Rheumatol. 2008;20:538–544. doi:10.1097/BOR.0b013e3283025ed4
  • Lech M, Anders H-J. The pathogenesis of lupus nephritis. J Am Soc Nephrol. 2013;24:1357–1366. doi:10.1681/ASN.2013010026
  • Rodero MP, Decalf J, Bondet V, et al. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med. 2017;214(5):1547–1555. doi:10.1084/jem.20161451
  • Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol. 2020;21(9):1094–1106. doi:10.1038/s41590-020-0743-0
  • Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165(3):551–565. doi:10.1016/j.cell.2016.03.008
  • Gao D, Li T, Li X-D, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci U S A. 2015;112(42):E5699–E5705. doi:10.1073/pnas.1516465112
  • Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175(5):2851–2858. doi:10.4049/jimmunol.175.5.2851
  • Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–692. doi:10.1016/j.immuni.2011.05.003
  • Keating SE, Baran M, Bowie AG. Cytosolic DNA sensors regulating type I interferon induction. Trends Immunol. 2011;32:574–581. doi:10.1016/j.it.2011.08.004
  • Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev. 2018;40:48–58. doi:10.1016/j.cytogfr.2018.03.007
  • Wang TT, Li ZG, Wang Q. The RNA-specific adenosine deaminase ADAR1 Inhibits Human Protein Kinase R Activation. Viral Immunol. 2018;31:537–538. doi:10.1089/vim.2018.0056
  • Patole PS, Zecher D, Pawar RD, et al. G-rich DNA suppresses systemic lupus. J Am Soc Nephrol. 2005;16(11):3273–3280. doi:10.1681/ASN.2005060658
  • Anders HJ. A Toll for lupus. Lupus. 2005;14:417–422. doi:10.1191/0961203305lu2102rr
  • Vance RE. Cytosolic DNA sensing: the field narrows. Immunity. 2016;45:227–228. doi:10.1016/j.immuni.2016.08.006
  • Bolin K, Imgenberg-Kreuz J, Leonard D, et al. Variants in BANK1 are associated with lupus nephritis of European ancestry. Genes Immun. 2021;22(3):194–202. doi:10.1038/s41435-021-00142-8
  • Pisitkun P, Deane JA, Difilippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312:1669–1672. doi:10.1126/science.1124978
  • Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25(3):417–428. doi:10.1016/j.immuni.2006.07.013
  • Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 2007;27(5):801–810. doi:10.1016/j.immuni.2007.09.009
  • Rönnblom L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups J Med Sci. 2011;116:227–237. doi:10.3109/03009734.2011.624649
  • Brown GJ, Cañete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605(7909):349–356. doi:10.1038/s41586-022-04642-z
  • Chen M, Daha MR, Kallenberg CGM. The complement system in systemic autoimmune disease. J Autoimmun. 2010;34:J276–J286. doi:10.1016/j.jaut.2009.11.014
  • Stegert M, Bock M, Trendelenburg M. Clinical presentation of human C1q deficiency: how much of a lupus? Mol Immunol. 2015;67:3–11. doi:10.1016/j.molimm.2015.03.007
  • Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008;40:1062–1064. doi:10.1038/ng.202
  • Kawasaki A, Ito S, Furukawa H, et al. Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Res Ther. 2010;12(5):R174. doi:10.1186/ar3134
  • Zhou J, Wu R, High AA, et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease. Proc Natl Acad Sci U S A. 2011;108(44):E998–E1006. doi:10.1073/pnas.1106232108
  • Moynihan TP, Cole CG, Dunham I, et al. Fine-mapping, genomic organization, and transcript analysis of the human ubiquitin-conjugating enzyme gene UBE2L3. Genomics. 1998;51(1):124–127. doi:10.1006/geno.1998.5257
  • Kim T, Bae S-C, Kang C. Synergistic activation of NF-κB by TNFAIP3 (A20) reduction and UBE2L3 (UBCH7) augment that synergistically elevate lupus risk. Arthritis Res Ther. 2020;22:93. doi:10.1186/s13075-020-02181-4
  • Liang J, Saad Y, Lei T, et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med. 2010;207:2959–2973. doi:10.1084/jem.20092641
  • Dobosz E, Lorenz G, Ribeiro A, et al. Murine myeloid cell MCPIP1 suppresses autoimmunity by regulating B-cell expansion and differentiation. Dis Model Mech. 2021;14(3):dmm047589. doi:10.1242/dmm.047589
  • Caster DJ, Korte EA, Nanda SK, et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J Am Soc Nephrol. 2013;24(11):1743–1754. doi:10.1681/ASN.2013020148
  • Lech M, Kantner C, Kulkarni OP, et al. Interleukin-1 receptor-associated kinase-M suppresses systemic lupus erythematosus. Ann Rheum Dis. 2011;70(12):2207–2217. doi:10.1136/ard.2011.155515
  • Szelinski F, Lino AC, Dörner T. B cells in systemic lupus erythematosus. Curr Opin Rheumatol. 2022;34:125–132. doi:10.1097/BOR.0000000000000865
  • Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol. 2022;13:953439.
  • Suárez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. 2016;43:32–38. doi:10.1016/j.coi.2016.09.001
  • Karimifar M, Akbari K, ArefNezhad R, et al. Impacts of FcγRIIB and FcγRIIIA gene polymorphisms on systemic lupus erythematosus disease activity index. BMC Res Notes. 2021;14(1):455. doi:10.1186/s13104-021-05868-2
  • Rzeszotarska E, Sowinska A, Stypinska B, et al. IL-1β, IL-10 and TNF-α polymorphisms may affect systemic lupus erythematosus risk and phenotype. Clin Exp Rheumatol. 2022;40:1708–1717.
  • Chrabot BS, Kariuki SN, Zervou MI, et al. Genetic variation near IRF8 is associated with serologic and cytokine profiles in systemic lupus erythematosus and multiple sclerosis. Genes Immun. 2013;14(8):471–478. doi:10.1038/gene.2013.42
  • Kim K, Brown EE, Choi CB, et al. Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Ann Rheum Dis. 2012;71:1809–1814.
  • Roberts AL, Thomas ER, Bhosle S, et al. Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases. Arthritis Res Ther. 2014;16(3):R114. doi:10.1186/ar4566
  • Moreno-Angarita A, Aragón CC, Tobón GJ. Cathelicidin LL-37: a new important molecule in the pathophysiology of systemic lupus erythematosus. J Transl Autoimmun. 2020;3:100029.
  • Borchers AT, Leibushor N, Naguwa SM, et al. Lupus nephritis: a critical review. Autoimmun Rev. 2012;12:174–194.
  • Schwartzman-Morris J, Putterman C. Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin Dev Immunol. 2012;604892:2012.
  • Maroz N, Segal MS. Lupus nephritis and end-stage kidney disease. Am J Med Sci. 2013;346:319–323.
  • Chung SA, Taylor KE., Graham RR, et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 2011;7:e1001323.
  • Freedman BI, Kopp JB, Langefeld CD, et al. The Apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol. 2010;21:1422–1426. doi:10.1681/ASN.2010070730
  • Lin CP, Adrianto I, Lessard CJ, et al. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun. 2012;13(3):232–238. doi:10.1038/gene.2011.82
  • Alonso-Perez E, Suarez-Gestal M, Calaza M, et al. Further evidence of subphenotype association with systemic lupus erythematosus susceptibility loci: a European cases only study. PLoS One. 2012;7(9):e45356. doi:10.1371/journal.pone.0045356
  • Taylor KE, Remmers EF, Lee AT, et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 2008;4:e1000084.
  • Bolin K, Sandling JK, Zickert A, et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS One. 2013;8(12):e84450. doi:10.1371/journal.pone.0084450
  • Zhou X, Cheng F, Qi Y, Zhao M, Zhang H. A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. Biomed Res Int. 2013;597921:2013.
  • Lanata CM, Nititham J, Taylor KE, et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematosus patients. PLoS One. 2018;13(6):e0199003. doi:10.1371/journal.pone.0199003
  • Zhang F, Wang Y-F, Zhang Y, et al. Independent Replication on Genome-Wide Association Study Signals Identifies IRF3 as a Novel Locus for Systemic Lupus Erythematosus. Front Genet. 2020;11:600. doi:10.3389/fgene.2020.00600
  • Dooley MA, Houssiau F, Aranow C, et al. Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus. 2013;22(1):63–72. doi:10.1177/0961203312465781
  • Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62:222–233.
  • Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64(4):1215–1226. doi:10.1002/art.34359
  • Kamburova EG, Koenen HJPM, Borgman KJE, et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am J Transplant. 2013;13:1503–1511. doi:10.1111/ajt.12220
  • Furie RA, Aroca G, Cascino MD, et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2022;81(1):100–107. doi:10.1136/annrheumdis-2021-220920
  • Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393–4402. doi:10.1182/blood-2009-06-225979
  • Haarhaus ML, Svenungsson E, Gunnarsson I. Ofatumumab treatment in lupus nephritis patients. Clin Kidney J. 2016;9:552–555. doi:10.1093/ckj/sfw022
  • Mackensen A, Müller F, Mougiakakos D, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022. doi:10.1038/s41591-022-02017-5
  • Mougiakakos D, Krönke G, Völkl S, et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med. 2021;385(6):567–569. doi:10.1056/NEJMc2107725
  • Merrill JT, Wallace DJ, Wax S, et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, Phase IIb study. Arthritis Rheumatol. 2018;70(2):266–276. doi:10.1002/art.40360
  • Wu D, Li J, Xu D, et al. A human recombinant fusion protein targeting B lymphocyte stimulator (BlyS) and a proliferation-inducing ligand (April), telitacicept (RC18), in systemic lupus erythematosus (SLE): results of a phase 2b study [abstract no. L18]. Arthritis Rheumatol. 2019;71(Suppl10):5262–5264.
  • Merrill JT, Van Vollenhoven RF, Buyon JP, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, Phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:332–340.
  • Isenberg DA, Petri M, Kalunian K, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(2):323–331. doi:10.1136/annrheumdis-2015-207653
  • Merrill JT, Shanahan WR, Scheinberg M, et al. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2018;77(6):883–889. doi:10.1136/annrheumdis-2018-213032
  • Cheng LE, Amoura Z, Cheah B, et al. Brief report: a randomized, double-blind, parallel-group, placebo-controlled, multiple-dose study to evaluate AMG 557 in patients with systemic lupus erythematosus and active lupus arthritis. Arthritis Rheumatol. 2018;70:1071–1076.
  • Lipsky PE, Vollenhoven RV, Dörner T, et al. Biological impact of iberdomide in patients with active systemic lupus erythematosus. Ann Rheum Dis Annrheumdis. 2022;81(8):1136–1142. doi:10.1136/annrheumdis-2022-222212
  • Merrill JT, Werth VP, Furie R, et al. Phase 2 trial of iberdomide in systemic lupus erythematosus. N Engl J Med. 2022;386:1034–1045.
  • Klimatcheva E, Pandina T, Reilly C, et al. CXCL13 antibody for the treatment of autoimmune disorders. BMC Immunol. 2015;16:6.
  • Hiepe F, Alexander T, Voll RE. Plasmazellen [Plasma cells]. Z Rheumatol. 2015;74:20–25. German. doi:10.1007/s00393-014-1438-4
  • Odendahl M, Mei H, Hoyer BF, et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood. 2005;105(4):1614–1621. doi:10.1182/blood-2004-07-2507
  • Muehlinghaus G, Cigliano L, Huehn S, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood. 2005;105(10):3965–3971. doi:10.1182/blood-2004-08-2992
  • Arce S, Luger E, Muehlinghaus G, et al. CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J Leukoc Biol. 2004;75(6):1022–1028. doi:10.1189/jlb.0603279
  • Rodríguez-Bayona B, Ramos-Amaya A, Bernal J, Campos-Caro A, Brieva JA. Cutting edge: IL-21 derived from human follicular helper T cells acts as a survival factor for secondary lymphoid organ, but not for bone marrow, plasma cells. J Immunol. 2012;188:1578–1581. doi:10.4049/jimmunol.1102786
  • Kehrl JH, Riva A, Wilson GL, Thévenin C. Molecular mechanisms regulating CD19, CD20 and CD22 gene expression. Immunol Today. 1994;15:432–436. doi:10.1016/0167-5699(94)90273-9
  • Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013;15(Suppl 1):S3. doi:10.1186/ar3908
  • Hoyer BF, Moser K, Hauser AE, et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med. 2004;199(11):1577–1584. doi:10.1084/jem.20040168
  • Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748–755. doi:10.1038/nm1763
  • Ostendorf L, Burns M, Durek P, et al. Targeting CD38 with Daratumumab in Refractory Systemic Lupus Erythematosus. N Engl J Med. 2020;383(12):1149–1155. doi:10.1056/NEJMoa2023325
  • Alexander T, Sarfert R, Klotsche J, et al. The proteasome inhibitor bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74(7):1474–1478. doi:10.1136/annrheumdis-2014-206016
  • Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–938. doi:10.1038/nm.1857
  • Jayne D, Rovin B, Mysler EF, et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann Rheum Dis. 2022;81(4):496–506. doi:10.1136/annrheumdis-2021-221478
  • Steiger S, Anders H-J. Interferon blockade in lupus: effects on antiviral immunity. Nat Rev Nephrol. 2022;18:415–416. doi:10.1038/s41581-022-00581-0
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–1916. doi:10.1136/annrheumdis-2015-208562
  • Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75(1):196–202. doi:10.1136/annrheumdis-2014-206090
  • Wallace DJ, Furie RA, Tanaka Y, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet. 2018;392(10143):222–231. doi:10.1016/S0140-6736(18)31363-1
  • Hasni SA, Gupta S, Davis M, et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun. 2021;12(1):3391. doi:10.1038/s41467-021-23361-z
  • Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheumatol. 2017;69(1):148–160. doi:10.1002/art.39818
  • Baker M, Chaichian Y, Genovese M, et al. Phase II, randomised, double-blind, multicentre study evaluating the safety and efficacy of filgotinib and lanraplenib in patients with lupus membranous nephropathy. RMD Open. 2020;6(3):e001490. doi:10.1136/rmdopen-2020-001490
  • Bao L, Cunningham PN, Quigg RJ. Complement in Lupus Nephritis: new Perspectives. Kidney Dis. 2015;1:91–99. doi:10.1159/000431278
  • Li NL, Birmingham DJ, Rovin BH. Expanding the Role of Complement Therapies: the Case for Lupus Nephritis. J Clin Med. 2021;10:626. doi:10.3390/jcm10040626
  • Martin M, Blom AM. Complement in removal of the dead - balancing inflammation. Immunol Rev. 2016;274:218–232. doi:10.1111/imr.12462
  • Birmingham DJ, Hebert LA. CR1 and CR1-like: the primate immune adherence receptors. Immunol Rev. 2001;180:100–111. doi:10.1034/j.1600-065X.2001.1800109.x
  • Birmingham DJ, Gavit KF, McCarty SM, et al. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare. Clin Exp Immunol. 2006;143(2):274–280. doi:10.1111/j.1365-2249.2005.02983.x
  • He J, Zhang R, Shao M, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis. 2020;79(1):141–149. doi:10.1136/annrheumdis-2019-215396
  • Koga T, Ichinose K, Kawakami A, Tsokos GC. The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev Clin Immunol. 2019;15:629–637. doi:10.1080/1744666X.2019.1593141
  • Morel T, Cano S, Bartlett SJ, et al. The FATIGUE-PRO: a new patient-reported outcome instrument to quantify fatigue in patients affected by systemic lupus erythematosus. Rheumatology. 2022;61(8):3329–3340. doi:10.1093/rheumatology/keab920
  • Oaks Z, Winans T, Huang N, Banki K, Perl A. Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr Rheumatol Rep. 2016;18:73. doi:10.1007/s11926-016-0622-8
  • Mao Z, Tan Y, Tao J, et al. Renal mTORC1 activation is associated with disease activity and prognosis in lupus nephritis. Rheumatology. 2022;61(9):3830–3840. doi:10.1093/rheumatology/keac037
  • Lui SL, Yung S, Tsang R, et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F 1 mice. Lupus. 2008;17(4):305–313. doi:10.1177/0961203307088289
  • Zhang C, Chan CY, Cheung K, et al. Effect of mycophenolate and rapamycin on renal fibrosis in lupus nephritis. Clin Sci. 2019;133(15):1721–1744. doi:10.1042/CS20190536
  • Lai Z-W, Kelly R, Winans T, et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet. 2018;391(10126):1186–1196. doi:10.1016/S0140-6736(18)30485-9
  • Dutta D, Barr VA, Akpan I, et al. Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat Immunol. 2017;18(2):196–204. doi:10.1038/ni.3640
  • Sin FE, Isenberg D. An evaluation of voclosporin for the treatment of lupus nephritis. Expert Opin Pharmacother. 2018;19:1613–1621. doi:10.1080/14656566.2018.1516751
  • Rovin BH, Teng YKO, Ginzler EM, et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (Aurora 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2021;397(10289):2070–2080. doi:10.1016/S0140-6736(21)00578-X
  • Bao H, Liu Z-H, Xie H-L, et al. Successful treatment of class V+IV lupus nephritis with multitarget therapy. J Am Soc Nephrol. 2008;19(10):2001–2010. doi:10.1681/ASN.2007121272
  • Liu Z, Zhang H, Liu Z, et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med. 2015;162(1):18–26. doi:10.7326/M14-1030
  • Zhang H, Liu Z, Zhou M, et al. Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol. 2017;28(12):3671–3678. doi:10.1681/ASN.2017030263
  • Chen W, Tang X, Liu Q, et al. Short-term outcomes of induction therapy with tacrolimus versus cyclophosphamide for active lupus nephritis: a multicenter randomized clinical trial. Am J Kidney Dis. 2011;57(2):235–244. doi:10.1053/j.ajkd.2010.08.036
  • Li X, Ren H, Zhang Q, et al. Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant. 2012;27(4):1467–1472. doi:10.1093/ndt/gfr484
  • Mok CC, Ying KY, Yim CW, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis. 2016;75(1):30–36. doi:10.1136/annrheumdis-2014-206456
  • Mok CC, Ho LY, Ying SKY, et al. Long-term outcome of a randomised controlled trial comparing tacrolimus with mycophenolate mofetil as induction therapy for active lupus nephritis. Ann Rheum Dis. 2020;79(8):1070–1076. doi:10.1136/annrheumdis-2020-217178
  • Zheng Z, Zhang H, Peng X, et al. Effect of tacrolimus vs intravenous cyclophosphamide on complete or partial response in patients with lupus nephritis: a randomized clinical trial. JAMA Netw Open. 2022;5(3):e224492. doi:10.1001/jamanetworkopen.2022.4492
  • Choi C-B, Won S, Bae S-C. Outcomes of multitarget therapy using mycophenolate mofetil and tacrolimus for refractory or relapsing lupus nephritis. Lupus. 2018;27:1007–1011. doi:10.1177/0961203318758505
  • Yap DYH, Li PH, Tang C, et al. Long-term results of triple immunosuppression with tacrolimus added to mycophenolate and corticosteroids in the treatment of lupus nephritis. Kidney Int Rep. 2022;7(3):516–525. doi:10.1016/j.ekir.2021.12.005
  • Austin HA, Illei GG, Braun MJ, Balow JE. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol. 2009;20:901–911. doi:10.1681/ASN.2008060665
  • Zavada J, Pešickova SS, Ryšava R, et al. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study. Lupus. 2010;19(11):1281–1289. doi:10.1177/0961203310371155