769
Views
15
CrossRef citations to date
0
Altmetric
REVIEW

The Role of Vitamin D in Immune System and Inflammatory Bowel Disease

ORCID Icon, &
Pages 3167-3185 | Published online: 28 May 2022

References

  • Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–1364. doi:10.3945/ajcn.111.031070
  • Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, Hormone, and Immunomodulator. Nutrients. 2018;1:10.
  • Fakhoury HMA, Kvietys PR, AlKattan W, et al. Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol. 2020;200:105663.
  • Murdaca G, Tonacci A, Negrini S, et al. Emerging role of vitamin D in autoimmune diseases: an update on evidence and therapeutic implications. Autoimmun Rev. 2019;18:102350.
  • Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun. 2017;85:78–97.
  • Linneman Z, Reis C, Balaji K, et al. The vitamin D positive feedback hypothesis of inflammatory bowel diseases. Med Hypotheses. 2019;127:154–158.
  • Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res. 2019;2019:7247238.
  • Castro FD, Magalhaes J, Carvalho PB, et al. Lower Levels of Vitamin D Correlate with Clinical Disease Activity and Quality of Life in Inflammatory Bowel Disease. Arq Gastroenterol. 2015;52:260–265.
  • Mechie NC, Mavropoulou E, Ellenrieder V, et al. Distinct Association of Serum Vitamin D Concentration with Disease Activity and Trough Levels of Infliximab and Adalimumab during Inflammatory Bowel Disease Treatment. Digestion. 2020;101:761–770.
  • Santos-Antunes J, Nunes AC-R, Lopes S, et al. The Relevance of Vitamin D and Antinuclear Antibodies in Patients with Inflammatory Bowel Disease Under Anti-TNF Treatment: a Prospective Study. Inflamm Bowel Dis. 2016;22(5):1101–1106. doi:10.1097/MIB.0000000000000697
  • Scolaro BL, Barretta C, Matos CH, et al. Deficiency of vitamin D and its relation with clinical and laboratory activity of inflammatory bowel diseases. J Coloproctol. 2018;38:099–104.
  • Lopez-Munoz P, Beltran B, Saez-Gonzalez E, et al. Influence of Vitamin D Deficiency on Inflammatory Markers and Clinical Disease Activity in IBD Patients. Nutrients. 2019;1:11.
  • Kabbani TA, Koutroubakis IE, Schoen RE, et al. Association of Vitamin D Level With Clinical Status in Inflammatory Bowel Disease: a 5-Year Longitudinal Study. Am J Gastroenterol. 2016;111:712–719.
  • Hausmann J, Kubesch A, Amiri M, et al. Vitamin D Deficiency is Associated with Increased Disease Activity in Patients with Inflammatory Bowel Disease. J Clin Med. 2019;1:8.
  • Morton H, Pedley KC, Stewart RJ, et al. Vitamin D concentrations in New Zealanders with and without inflammatory bowel disease: do they differ? N Z Med J. 2020;133:61–70.
  • Torki M, Gholamrezaei A, Mirbagher L, et al. Vitamin D Deficiency Associated with Disease Activity in Patients with Inflammatory Bowel Diseases. Dig Dis Sci. 2015;60:3085–3091.
  • Wang HQ, Zhang WH, Wang YQ, et al. Colonic vitamin D receptor expression is inversely associated with disease activity and jumonji domain-containing 3 in active ulcerative colitis. World J Gastroenterol. 2020;26:7352–7366.
  • Yang Y, Cui X, Li J, et al. Clinical evaluation of vitamin D status and its relationship with disease activity and changes of intestinal immune function in patients with Crohn’s disease in the Chinese population. Scand J Gastroenterol. 2021;56:20–29.
  • Schardey J, Globig AM, Janssen C, et al. Vitamin D Inhibits Pro-Inflammatory T Cell Function in Patients With Inflammatory Bowel Disease. J Crohns Colitis. 2019;13:1546–1557.
  • Ulitsky A, Ananthakrishnan AN, Naik A, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr. 2011;35:308–316.
  • Meckel K, Li YC, Lim J, et al. Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis. Am J Clin Nutr. 2016;104:113–120.
  • Ham M, Longhi MS, Lahiff C, et al. Vitamin D levels in adults with Crohn’s disease are responsive to disease activity and treatment. Inflamm Bowel Dis. 2014;20:856–860.
  • Reboul E, Goncalves A, Comera C, et al. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res. 2011;55:691–702.
  • Jungert A, Spinneker A, Nagel A, et al. Dietary intake and main food sources of vitamin D as a function of age, sex, vitamin D status, body composition, and income in an elderly German cohort. Food Nutr Res. 2014;1:58.
  • Yu A, Kim J, Kwon O, et al. The association between serum 25-hydroxyvitamin d concentration and consumption frequencies of vitamin d food sources in Korean adolescents. Clin Nutr Res. 2013;2:107–114.
  • Huybrechts I, Lin Y, De Keyzer W, et al. Dietary sources and sociodemographic and economic factors affecting vitamin D and calcium intakes in Flemish preschoolers. Eur J Clin Nutr. 2011;65:1039–1047.
  • McDonnell SL, French CB, Heaney RP. Quantifying the food sources of basal vitamin d input. J Steroid Biochem Mol Biol. 2014;144 Pt A:149–151.
  • Aguilar-Shea AL, Vitamin D. the natural way. Clin Nutr ESPEN. 2021;41:10–12.
  • Novak I, Potts AW. Electronic structure of vitamins D2 and D3. Biochim Biophys Acta. 1997;1319:86–90.
  • Lawson DE, Fraser DR, Kodicek E, et al. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature. 1971;230:228–230.
  • Blunt JW, DeLuca HF. The synthesis of 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1969;8:671–675.
  • Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523:123–133.
  • Booth DR, Ding N, Parnell GP, et al. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun. 2016;17:213–219.
  • Kundu R, Theodoraki A, Haas CT, et al. Cell-type-specific modulation of innate immune signalling by vitamin D in human mononuclear phagocytes. Immunology. 2017;150:55–63.
  • Nurminen V, Seuter S, Carlberg C. Primary Vitamin D Target Genes of Human Monocytes. Front Physiol. 2019;10:194.
  • Tay HM, Yeap WH, Dalan R, et al. Increased monocyte-platelet aggregates and monocyte-endothelial adhesion in healthy individuals with vitamin D deficiency. FASEB J. 2020;34:11133–11142.
  • Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188:2127–2135.
  • Dickie LJ, Church LD, Coulthard LR, et al. Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology. 2010;49:1466–1471.
  • Wientroub S, Winter CC, Wahl SM, et al. Effect of vitamin D deficiency on macrophage and lymphocyte function in the rat. Calcif Tissue Int. 1989;44:125–130.
  • Wang Q, He Y, Shen Y, et al. Vitamin D inhibits COX-2 expression and inflammatory response by targeting thioesterase superfamily member 4. J Biol Chem. 2014;289:11681–11694.
  • Ma D, Zhang RN, Wen Y, et al. 1, 25(OH)(2)D(3)-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation. Biochem Biophys Res Commun. 2017;482:366–374.
  • Bhalla AK, Amento EP, Krane SM. Differential effects of 1,25-dihydroxyvitamin D3 on human lymphocytes and monocyte/macrophages: inhibition of interleukin-2 and augmentation of interleukin-1 production. Cell Immunol. 1986;98:311–322.
  • Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170:5382–5390.
  • Cao R, Ma Y, Li S, et al. 1,25(OH)(2) D(3) alleviates DSS-induced ulcerative colitis via inhibiting NLRP3 inflammasome activation. J Leukoc Biol. 2020;108:283–295.
  • Gottfried E, Rehli M, Hahn J, et al. Monocyte-derived cells express CYP27A1 and convert vitamin D3 into its active metabolite. Biochem Biophys Res Commun. 2006;349:209–213.
  • Morgan JW, Sliney DJ, Morgan DM, et al. Differential regulation of gene transcription in subpopulations of human B lymphocytes by vitamin D3. Endocrinology. 1999;140:381–391.
  • Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–1647.
  • Piedra-Quintero ZL, Wilson Z, Nava P, et al. CD38: an Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol. 2020;11:597959.
  • Drozdenko G, Heine G, Worm M. Oral vitamin D increases the frequencies of CD38+ human B cells and ameliorates IL-17-producing T cells. Exp Dermatol. 2014;23:107–112.
  • James J, Weaver V, Cantorna MT. Control of Circulating IgE by the Vitamin D Receptor In Vivo Involves B Cell Intrinsic and Extrinsic Mechanisms. J Immunol. 2017;198:1164–1171.
  • Geldmeyer-Hilt K, Heine G, Hartmann B, et al. 1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naïve B cells. Biochem Biophys Res Commun. 2011;407:699–702.
  • de Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995;27:537–541.
  • Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.
  • Heine G, Niesner U, Chang HD, et al. 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J Immunol. 2008;38:2210–2218.
  • Székely JI, Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: a short review. Expert Rev Respir Med. 2012;6:683–704.
  • Cantorna MT, Yu S, Bruce D. The paradoxical effects of vitamin D on type 1 mediated immunity. Mol Aspects Med. 2008;29:369–375.
  • von Essen MR, Kongsbak M, Schjerling P, et al. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11:344–349.
  • Cantorna MT, Waddell A. The vitamin D receptor turns off chronically activated T cells. Ann N Y Acad Sci. 2014;1317:70–75.
  • Zhou Q, Qin S, Zhang J, et al. 1,25(OH)(2)D(3) induces regulatory T cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway. Mol Immunol. 2017;91:156–164.
  • Palmer MT, Lee YK, Maynard CL, et al. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J Biol Chem. 2011;286:997–1004.
  • Zeitelhofer M, Adzemovic MZ, Gomez-Cabrero D, et al. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬. Proc Natl Acad Sci U S A. 2017;114:E1678–e1687.
  • Sloka S, Silva C, Wang J, et al. Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J Neuroinflammation. 2011;8:56.
  • Zhang Z, Chen F, Li J, et al. 1,25(OH)(2)D(3) suppresses proinflammatory responses by inhibiting Th1 cell differentiation and cytokine production through the JAK/STAT pathway. Am J Transl Res. 2018;10:2737–2746.
  • Dankers W, Davelaar N, Van Hamburg JP, et al. Human Memory Th17 Cell Populations Change Into Anti-inflammatory Cells With Regulatory Capacity Upon Exposure to Active Vitamin D. Front Immunol. 2019;10:1504.
  • Bruce D, Yu S, Ooi JH, et al. Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. Int Immunol. 2011;23:519–528.
  • Sahota O. Understanding vitamin D deficiency. Age Ageing. 2014;43:589–591.
  • Mogire RM, Mutua A, Kimita W, et al. Prevalence of vitamin D deficiency in Africa: a systematic review and meta-analysis. The Lancet Global Health. 2020;8:e134–e142.
  • Cashman KD, Dowling KG, Skrabakova Z, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103:1033–1044.
  • Liu X, Baylin A, Levy PD. Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br J Nutr. 2018;119:928–936.
  • Pereira-Santos M, Santos J, Carvalho GQ, et al. Epidemiology of vitamin D insufficiency and deficiency in a population in a sunny country: geospatial meta-analysis in Brazil. Crit Rev Food Sci Nutr. 2019;59:2102–2109.
  • Jiang W, Wu DB, Xiao GB, et al. An epidemiology survey of vitamin D deficiency and its influencing factors. Med Clin (Barc). 2020;154:7–12.
  • McDonnell SL, French CB, Heaney RP. Quantifying the non-food sources of basal vitamin D input. J Steroid Biochem Mol Biol. 2014;144 Pt A:146–148.
  • Hilger J, Friedel A, Herr R, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111:23–45.
  • Ko KH, Kim YS, Lee BK, et al. Vitamin D deficiency is associated with disease activity in patients with Crohn’s disease. Intest Res. 2019;17:70–77.
  • Del Pinto R, Pietropaoli D, Chandar AK, et al. P.07.11 Association between Inflammatory Bowel Disease and Vitamin D Deficiency: a Systematic Review and Meta-Analysis. Digestive and Liver Disease. 2016;1:48.
  • Santucci NR, Alkhouri RH, Baker RD, et al. Vitamin and zinc status pretreatment and posttreatment in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;59:455–457.
  • Rasouli E, Sadeghi N, Parsi A, et al. Relationship Between Vitamin D Deficiency and Disease Activity in Patients with Inflammatory Bowel Disease in Ahvaz, Iran. Clin Exp Gastroenterol. 2020;13:419–425.
  • Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19:73–78.
  • Lagunova Z, Porojnicu AC, Vieth R, et al. Serum 25-hydroxyvitamin D is a predictor of serum 1,25-dihydroxyvitamin D in overweight and obese patients. J Nutr. 2011;141:112–117.
  • Roth DE, Abrams SA, Aloia J, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N Y Acad Sci. 2018;1430:44–79.
  • Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet. 2017;390:2769–2778.
  • Chen ML, Sundrud MS. Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflamm Bowel Dis. 2016;22:1157–1167.
  • Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845–858.
  • Liu Z, Feng BS, Yang SB, et al. Interleukin (IL)-23 suppresses IL-10 in inflammatory bowel disease. J Biol Chem. 2012;287:3591–3597.
  • Zhou Q, Qin S, Zhang J, et al. 1,25(OH)2D3 induces regulatory T cell differentiation by influencing the VDR/PLC-gamma1/TGF-beta1/pathway. Mol Immunol. 2017;91:156–164.
  • He L, Liu T, Shi Y, et al. Gut Epithelial Vitamin D Receptor Regulates Microbiota-Dependent Mucosal Inflammation by Suppressing Intestinal Epithelial Cell Apoptosis. Endocrinology. 2018;159:967–979.
  • Xia Y, Chen H, Xiao H, et al. Immune regulation mechanism of vitamin D level and IL-17/IL-17R pathway in Crohn’s disease. Exp Ther Med. 2019;17:3423–3428.
  • Zerofsky MS, Jacoby BN, Pedersen TL, et al. Daily Cholecalciferol Supplementation during Pregnancy Alters Markers of Regulatory Immunity, Inflammation, and Clinical Outcomes in a Randomized Controlled Trial. J Nutr. 2016;146:2388–2397.
  • Daniel C, Sartory NA, Zahn N, et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324:23–33.
  • Sharifi A, Vahedi H, Honarvar MR, et al. Vitamin D Increases CTLA-4 Gene Expression in Patients with Mild to Moderate Ulcerative Colitis. Middle East J Dig Dis. 2019;11:199–204.
  • Ardizzone S, Cassinotti A, Trabattoni D, et al. Immunomodulatory effects of 1,25-dihydroxyvitamin D3 on TH1/TH2 cytokines in inflammatory bowel disease: an in vitro study. Int J Immunopathol Pharmacol. 2009;22:63–71.
  • Strauch UG, Obermeier F, Grunwald N, et al. Calcitriol analog ZK191784 ameliorates acute and chronic dextran sodium sulfate-induced colitis by modulation of intestinal dendritic cell numbers and phenotype. World J Gastroenterol. 2007;13:6529–6537.
  • Sharifi A, Vahedi H, Nedjat S, et al. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS. 2019;127:681–687.
  • Zhang H, Wu H, Liu L, et al. 1,25-dihydroxyvitamin D3 regulates the development of chronic colitis by modulating both T helper (Th)1 and Th17 activation. Apmis. 2015;123:490–501.
  • Geremia A, Biancheri P, Allan P, et al. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev. 2014;13:3–10.
  • Gubatan J, Mehigan GA, Villegas F, et al. Cathelicidin Mediates a Protective Role of Vitamin D in Ulcerative Colitis and Human Colonic Epithelial Cells. Inflamm Bowel Dis. 2020;26:885–897.
  • Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol. 2007;8:5.
  • Lee C, Lau E, Chusilp S, et al. Protective effects of vitamin D against injury in intestinal epithelium. Pediatr Surg Int. 2019;35:1395–1401.
  • Wang SL, Shao BZ, Zhao SB, et al. Impact of Paneth Cell Autophagy on Inflammatory Bowel Disease. Front Immunol. 2018;9:693.
  • Lu R, Zhang Y-G, Xia Y, et al. Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors. Gastroenterology. 2021;160(4):1269–1283. doi:10.1053/j.gastro.2020.11.015
  • Wu P, Zhang R, Luo M, et al. Liver Injury Impaired 25-Hydroxylation of Vitamin D Suppresses Intestinal Paneth Cell defensins, leading to Gut Dysbiosis and Liver Fibrogenesis. Am J Physiol Gastrointest Liver Physiol. 2020;319:G685–95.
  • Su D, Nie Y, Zhu A, et al. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front Physiol. 2016;7:498.
  • Wu S, Zhang YG, Lu R, et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. 2015;64:1082–1094.
  • Wang F, Johnson RL, DeSmet ML, et al. Vitamin D Receptor-Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis. Endocrinology. 2017;158:1951–1963.
  • Goswami S, Flores J, Balasubramanian I, et al. 1,25-Dihydroxyvitamin D(3) and dietary vitamin D reduce inflammation in mice lacking intestinal epithelial cell Rab11a. J Cell Physiol. 2021;236:8148–8159.
  • Zai K, Hirota M, Yamada T, et al. Therapeutic effect of vitamin D(3)-containing nanostructured lipid carriers on inflammatory bowel disease. J Control Release. 2018;286:94–102.
  • Leyssens C, Verlinden L, De Hertogh G, et al. Impact on Experimental Colitis of Vitamin D Receptor Deletion in Intestinal Epithelial or Myeloid Cells. Endocrinology. 2017;158:2354–2366.
  • Ooi JH, Li Y, Rogers CJ, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143:1679–1686.
  • Bak NF, Bendix M, Hald S, et al. High-dose vitamin D(3) supplementation decreases the number of colonic CD103(+) dendritic cells in healthy subjects. Eur J Nutr. 2018;57:2607–2619.
  • He L, Zhou M, Li YC. Vitamin D/Vitamin D Receptor Signaling Is Required for Normal Development and Function of Group 3 Innate Lymphoid Cells in the Gut. iScience. 2019;17:119–131.
  • Lin YD, Arora J, Diehl K, et al. Vitamin D Is Required for ILC3 Derived IL-22 and Protection From Citrobacter rodentium Infection. Front Immunol. 2019;10:1.
  • Chen J, Waddell A, Lin YD, et al. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 2015;8:618–626.
  • Konya V, Czarnewski P, Forkel M, et al. Vitamin D downregulates the IL-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J Allergy Clin Immunol. 2018;141:279–292.
  • Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:223–237.
  • Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47–55.
  • Zuo T, Ng SC. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol. 2018;9:2247.
  • Ni J, Wu GD, Albenberg L, et al. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017;14:573–584.
  • Charoenngam N, Shirvani A, Kalajian TA, et al. The Effect of Various Doses of Oral Vitamin D3 Supplementation on Gut Microbiota in Healthy Adults: a Randomized, Double-blinded, Dose-response Study. Anticancer Res. 2020;40:551–556.
  • Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes. 2017;8:238–252.
  • Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: a Randomized Clinical Trial. JAMA. 2019;321:156–164.
  • Sokol H, Landman C, Seksik P, et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome. 2020;8:12.
  • Moayyedi P, Surette MG, Kim PT, et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015;149:102–109.e6.
  • Naderpoor N, Mousa A, Fernanda Gomez Arango L, et al. Effect of Vitamin D Supplementation on Faecal Microbiota: a Randomised Clinical Trial. Nutrients. 2019;1:11.
  • Bashir M, Prietl B, Tauschmann M, et al. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 2016;55:1479–1489.
  • Olbjorn C, Cvancarova Smastuen M, Thiis-Evensen E, et al. Fecal microbiota profiles in treatment-naive pediatric inflammatory bowel disease - associations with disease phenotype, treatment, and outcome. Clin Exp Gastroenterol. 2019;12:37–49.
  • Zhou Y, Zhi F. Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: a Meta-Analysis. Biomed Res Int. 2016;2016:5828959.
  • Schäffler H, Herlemann DP, Klinitzke P, et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn’s disease patients, but not in healthy controls. J Dig Dis. 2018;19:225–234.
  • Lagishetty V, Misharin AV, Liu NQ, et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology. 2010;151:2423–2432.
  • Cantorna MT, Lin YD, Arora J, et al. Vitamin D Regulates the Microbiota to Control the Numbers of RORγt/FoxP3+ Regulatory T Cells in the Colon. Front Immunol. 2019;10:1772.
  • Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2008;294:G208–16.
  • Zhao H, Zhang H, Wu H, et al. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterol. 2012;12:57.
  • Chatterjee I, Zhang Y, Zhang J, et al. Overexpression of Vitamin D Receptor in Intestinal Epithelia Protects Against Colitis via Upregulating Tight Junction Protein Claudin 15. J Crohns Colitis. 2021;2:e54.
  • Zhang YG, Wu S, Lu R, et al. Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Sci Rep. 2015;5:10642.
  • Kuhne H, Hause G, Grundmann SM, et al. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36:184–192.
  • Kellermann L, Jensen KB, Bergenheim F, et al. Mucosal vitamin D signaling in inflammatory bowel disease. Autoimmun Rev. 2020;19:102672.
  • Yu M, Wu H, Wang J, et al. Vitamin D receptor inhibits EMT via regulation of the epithelial mitochondrial function in intestinal fibrosis. J Biol Chem. 2021;296:100531.
  • Zhang J, Zhang Y, Xia Y, et al. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes. 2021;13:1957408.
  • Sun J. VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy. 2016;12:1057–1058.
  • Lu R, Zhang YG, Xia Y, et al. Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. FASEB j. 2019;33:11845–11856.
  • McGillis L, Bronte-Tinkew DM, Dang F, et al. Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and “involved” IBD patient intestinal tissues. Am J Physiol Gastrointest Liver Physiol. 2021;321:G171–g184.
  • Goldberg RF, Austen WG, Zhang X, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A. 2008;105:3551–3556.
  • Noda S, Yamada A, Nakaoka K, et al. 1-alpha,25-Dihydroxyvitamin D(3) up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis. Nutr Res. 2017;46:59–67.
  • Xu Y, Baylink DJ, Cao H, et al. Inflammation- and Gut-Homing Macrophages, Engineered to De Novo Overexpress Active Vitamin D, Promoted the Regenerative Function of Intestinal Stem Cells. Int J Mol Sci. 2021;1:22.
  • Ananthakrishnan AN, Higuchi LM, Khalili H, et al. A Prospective Study of Vitamin D Status and Risk of Incident Crohn’s Disease and Ulcerative Colitis. Gastroenterology. 2011;1:140.
  • Kojecký V, Matouš J, Zádorová Z, et al. Vitamin D supplementation dose needs to be higher in patients with inflammatory bowel disease: interventional study. Vnitr Lek. 2019;65:470–474.
  • Lee R, Maltz RM, Crandall WV, et al. Single High-dose Vitamin D3 Supplementation in Pediatric Patients With Inflammatory Bowel Disease and Hypovitaminosis D. J Pediatr Gastroenterol Nutr. 2020;70:e77–e80.
  • Kojecky V, Matous J, Kianicka B, et al. Vitamin D levels in IBD: a randomised trial of weight-based versus fixed dose vitamin D supplementation. Scand J Gastroenterol. 2020;55:671–676.
  • Ananthakrishnan AN, Cagan A, Gainer VS, et al. Normalization of Plasma 25-Hydroxy Vitamin D Is Associated with Reduced Risk of Surgery in Crohn’s Disease. Inflamm Bowel Dis. 2013;2:5432.
  • Guzman-Prado Y, Samson O, Segal JP, et al. Vitamin D Therapy in Adults With Inflammatory Bowel Disease: a Systematic Review and Meta-Analysis. Inflamm Bowel Dis. 2020;26:1819–1830.
  • Ahamed ZR, Dutta U, Sharma V, et al. Oral Nano Vitamin D Supplementation Reduces Disease Activity in Ulcerative Colitis: a Double-Blind Randomized Parallel Group Placebo-controlled Trial. J Clin Gastroenterol. 2019;53:e409–e415.
  • Karimi S, Tabataba-Vakili S, Yari Z, et al. The effects of two vitamin D regimens on ulcerative colitis activity index, quality of life and oxidant/anti-oxidant status. Nutr J. 2019;18:16.
  • Narula N, Cooray M, Anglin R, et al. Impact of High-Dose Vitamin D3 Supplementation in Patients with Crohn’s Disease in Remission: a Pilot Randomized Double-Blind Controlled Study. Dig Dis Sci. 2017;62:448–455.
  • Sharifi A, Vahedi H, Nedjat S, et al. Vitamin D Decreases Beck Depression Inventory Score in Patients with Mild to Moderate Ulcerative Colitis: a Double-Blind Randomized Placebo-Controlled Trial. J Diet Suppl. 2019;16:541–549.
  • Arihiro S, Nakashima A, Matsuoka M, et al. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza and Upper Respiratory Infection in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2019;25:1088–1095.
  • Augustine MV, Leonard MB, Thayu M, et al. Changes in vitamin D-related mineral metabolism after induction with anti-tumor necrosis factor-α therapy in Crohn’s disease. J Clin Endocrinol Metab. 2014;99:E991–8.
  • Szabo D, Hosszu E, Arato A, et al. Seasonal variability of vitamin D and bone metabolism in infliximab-treated paediatric Crohn’s disease. Dig Liver Dis. 2015;47:652–657.
  • Xia SL, Min QJ, Shao XX, et al. Influence of Vitamin D3 Supplementation on Infliximab Effectiveness in Chinese Patients With Crohn’s Disease: a Retrospective Cohort Study. Front Nutr. 2021;8:739285.
  • Bendix M, Dige A, Jorgensen SP, et al. Seven Weeks of High-Dose Vitamin D Treatment Reduces the Need for Infliximab Dose-Escalation and Decreases Inflammatory Markers in Crohn’s Disease during One-Year Follow-Up. Nutrients. 2021;2:13.
  • Winter RW, Collins E, Cao B, et al. Higher 25-hydroxyvitamin D levels are associated with greater odds of remission with anti-tumour necrosis factor-alpha medications among patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2017;45:653–659.
  • Hizarcioglu-Gulsen H, Kaplan JL, Moran CJ, et al. The Impact of Vitamin D on Response to Anti-tumor Necrosis Factor-α Therapy in Children With Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr. 2021;72:e125–e131.
  • Reich KM, Fedorak RN, Madsen K, et al. Role of Vitamin D in Infliximab-induced Remission in Adult Patients with Crohn’s Disease. Inflamm Bowel Dis. 2016;22:92–99.
  • Stio M, Martinesi M, Bruni S, et al. Interaction among vitamin D(3) analogue KH 1060, TNF-alpha, and vitamin D receptor protein in peripheral blood mononuclear cells of inflammatory bowel disease patients. Int Immunopharmacol. 2006;6:1083–1092.
  • Martinesi M, Treves C, Bonanomi AG, et al. Down-regulation of adhesion molecules and matrix metalloproteinases by ZK 156979 in inflammatory bowel diseases. Clin Immunol. 2010;136:51–60.
  • Martinesi M, Treves C, d’Albasio G, et al. Vitamin D derivatives induce apoptosis and downregulate ICAM-1 levels in peripheral blood mononuclear cells of inflammatory bowel disease patients. Inflamm Bowel Dis. 2008;14:597–604.
  • Juneja M, Baidoo L, Schwartz MB, et al. Geriatric inflammatory bowel disease: phenotypic presentation, treatment patterns, nutritional status, outcomes, and comorbidity. Dig Dis Sci. 2012;57:2408–2415.
  • Garg M, Rosella O, Lubel JS, et al. Association of circulating vitamin D concentrations with intestinal but not systemic inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:2634–2643.
  • Law AD, Dutta U, Kochhar R, et al. Vitamin D deficiency in adult patients with ulcerative colitis: prevalence and relationship with disease severity, extent, and duration. Indian J Gastroenterol. 2019;38:6–14.
  • Zhao J, Wang Y, Gu Q, et al. The association between serum vitamin D and inflammatory bowel disease. Medicine. 2019;98:e15233.
  • Chetcuti Zammit S, Schembri J, Pisani A, et al. Vitamin D and Ulcerative Colitis: is There a Relationship with Disease Extent? Dig Dis. 2019;37:208–213.
  • Gubatan J, Mitsuhashi S, Zenlea T, et al. Low Serum Vitamin D During Remission Increases Risk of Clinical Relapse in Patients With Ulcerative Colitis. Clin Gastroenterol Hepatol. 2017;15:240–246 e1.
  • Gubatan J, Chou ND, Nielsen OH, et al. Systematic review with meta-analysis: association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2019;50:1146–1158.
  • Cusato J, Bertani L, Antonucci M, et al. Vitamin D-Related Genetics as Predictive Biomarker of Clinical Remission in Adalimumab-Treated Patients Affected by Crohn’s Disease: a Pilot Study. Pharmaceuticals. 2021;1:514.
  • Gubatan J, Rubin SJS, Bai L, et al. Vitamin D Is Associated with α4β7+ Immunophenotypes and Predicts Vedolizumab Therapy Failure in Patients with Inflammatory Bowel Disease. J Crohns Colitis. 2021;15:1980–1990.