248
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

TLR Signaling Pathway Gene Polymorphisms, Gene–Gene and Gene–Environment Interactions in Allergic Rhinitis

, , , , , , , , & ORCID Icon show all
Pages 3613-3630 | Published online: 22 Jun 2022

References

  • Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA (2) LEN and AllerGen). Allergy. 2008;63(Suppl 86):8–160. doi:10.1111/j.1398-9995.2007.01620.x
  • Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016;71(8):1170–1180. doi:10.1111/all.12874
  • Cheng L, Chen J, Fu Q, et al. Chinese Society of Allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2018;10(4):300–353. doi:10.4168/aair.2018.10.4.300
  • Warner JO. Asthma/rhinitis (The United Airway) and allergy: chicken or egg; which comes first? J Clin Med. 2020;9(5):1483. doi:10.3390/jcm9051483
  • Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 2007;147(2):199–207. doi:10.1111/j.1365-2249.2006.03203.x
  • Michels KR, Lukacs NW, Fonseca W. TLR activation and allergic disease: early life microbiome and treatment. Curr Allergy Asthma Rep. 2018;18(11):61. doi:10.1007/s11882-018-0815-5
  • Qian FH, Zhang Q, Zhou LF, Jin GF, Bai JL, Yin KS. Polymorphisms in the toll-like receptor 2 subfamily and risk of asthma: a case-control analysis in a Chinese population. J Investig Allergol Clin Immunol. 2010;20(4):340–346.
  • Korppi M, Törmänen S. Toll-like receptor 1 and 10 variations increase asthma risk and review highlights further research directions. Acta Paediatr. 2019;108(8):1406–1410. doi:10.1111/apa.14795
  • Zhao J, Shang H, Cao X, et al. Association of polymorphisms in TLR2 and TLR4 with asthma risk: an update meta-analysis. Medicine. 2017;96(35):e7909. doi:10.1097/MD.0000000000007909
  • Lau MY, Dharmage SC, Burgess JA, et al. The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma. Sci Rep. 2017;7:43681. doi:10.1038/srep43681
  • Gao Y, Xiao H, Wang Y, Xu F. Association of single-nucleotide polymorphisms in toll-like receptor 2 gene with asthma susceptibility: a meta-analysis. Medicine. 2017;96(20):e6822. doi:10.1097/MD.0000000000006822
  • Zhang Q, Qian FH, Zhou LF, et al. Polymorphisms in toll-like receptor 4 gene are associated with asthma severity but not susceptibility in a Chinese Han population. J Investig Allergol Clin Immunol. 2011;21(5):370–377.
  • Castro-Giner F, Künzli N, Jacquemin B, et al. Traffic-related air pollution, oxidative stress genes, and asthma (ECHRS). Environ Health Perspect. 2009;117(12):1919–1924. doi:10.1289/ehp.0900589
  • Nabih ES, Kamel HF, Kamel TB. Association between CD14 polymorphism (−1145G/A) and childhood bronchial asthma. Biochem Genet. 2016;54(1):50–60. doi:10.1007/s10528-015-9699-4
  • Kang I, Oh YK, Lee SH, Jung HM, Chae SC, Lee JH. Identification of polymorphisms in the Toll-like receptor gene and the association with allergic rhinitis. Eur Arch Otorhinolaryngol. 2010;267(3):385–389. doi:10.1007/s00405-009-1100-y
  • Han D, She W, Zhang L. Association of the CD14 gene polymorphism C-159T with allergic rhinitis. Am J Rhinol Allergy. 2010;24(1):e1–3. doi:10.2500/ajra.2010.24.3411
  • Fuertes E, Brauer M, MacIntyre E, et al. Childhood allergic rhinitis, traffic-related air pollution, and variability in the GSTP1, TNF, TLR2, and TLR4 genes: results from the TAG Study. J Allergy Clin Immunol. 2013;132(2):342–352. doi:10.1016/j.jaci.2013.03.007
  • Henmyr V, Carlberg D, Manderstedt E, et al. Genetic variation of the Toll-like receptors in a Swedish allergic rhinitis case population. BMC Med Genet. 2017;18(1):18. doi:10.1186/s12881-017-0379-6
  • Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. doi:10.1136/bmj.299.6710.1259
  • von Mutius E. Allergies, infections and the hygiene hypothesis-the epidemiological evidence. Immunobiology. 2007;212(6):433–439. doi:10.1016/j.imbio.2007.03.002
  • Martinez FD. CD14, endotoxin, and asthma risk: actions and interactions. Proc Am Thorac Soc. 2007;4(3):221–225. doi:10.1513/pats.200702-035AW
  • Smit LA, Siroux V, Bouzigon E, et al. CD14 and toll-like receptor gene polymorphisms, country living, and asthma in adults. Am J Respir Crit Care Med. 2009;179(5):363–368. doi:10.1164/rccm.200810-1533OC
  • Carnes MU, Hoppin JA, Metwali N, et al. House dust endotoxin levels are associated with adult asthma in a U.S. farming population. Ann Am Thorac Soc. 2017;14(3):324–331. doi:10.1513/AnnalsATS.201611-861OC
  • Eder W, Klimecki W, Yu L, et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol. 2004;113(3):482–488. doi:10.1016/j.jaci.2003.12.374
  • Chen RX, Lu WM, Lu MP, et al. Polymorphisms in MicroRNA target sites of TGF-beta signaling pathway genes and susceptibility to allergic rhinitis. Int Arch Allergy Immunol. 2021;182(5):399–407. doi:10.1159/000511975
  • Zhu XJ, Lu MP, Chen RX, et al. Polymorphism −509C/T in TGFB1 promoter is associated with increased risk and severity of persistent allergic rhinitis in a Chinese population. Am J Rhinol Allergy. 2020;34(5):597–603. doi:10.1177/1945892420913441
  • Bousquet PJ, Combescure C, Neukirch F, et al. Visual analog scales can assess the severity of rhinitis graded according to ARIA guidelines. Allergy. 2007;62(4):367–372. doi:10.1111/j.1398-9995.2006.01276.x
  • Micheal S, Minhas K, Ishaque M, Ahmed F, Ahmed A. Promoter polymorphisms of the CD14 gene are associated with atopy in Pakistani adults. J Investig Allergol Clin Immunol. 2011;21(5):394–397.
  • Chen ML, Zhao H, Huang QP, Xie ZF. Single nucleotide polymorphisms of IL-13 and CD14 genes in allergic rhinitis: a meta-analysis. Eur Arch Otorhinolaryngol. 2018;275(6):1491–1500. doi:10.1007/s00405-018-4975-7
  • Greenland S. A unified approach to the analysis of case-distribution (case-only) studies. Stat Med. 1999;18(1):1–15. doi:10.1002/(SICI)1097-0258(19990115)18:1<1::AID-SIM961>3.0.CO;2-L
  • Smit LA, Bongers SI, Ruven HJ, et al. Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study. Clin Exp Allergy. 2007;37(11):1602–1608. doi:10.1111/j.1365-2222.2007.02831.x
  • Lachheb J, Dhifallah IB, Chelbi H, Hamzaoui K, Hamzaoui A. Toll-like receptors and CD14 genes polymorphisms and susceptibility to asthma in Tunisian children. Tissue Antigens. 2008;71(5):417–425. doi:10.1111/j.1399-0039.2008.01011.x
  • Hussein YM, Awad HA, Shalaby SM, Ali AS, Alzahrani SS. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms and susceptibility to asthma and allergic rhinitis: a case-control analysis. Cell Immunol. 2012;274(1–2):34–38. doi:10.1016/j.cellimm.2012.02.006
  • Ortiz-Martínez MG, Frías-Belén O, Nazario-Jiménez S, López-Quintero M, Rodríguez-Cotto RI, Jiménez-Vélez BD. A case-control study of innate immunity pathway gene polymorphisms in Puerto Ricans reveals association of toll-like receptor 2 +596 variant with asthma. BMC Pulm Med. 2016;16(1):112. doi:10.1186/s12890-016-0272-7
  • Dębińska A, Danielewicz H, Drabik-Chamerska A, Kalita D, Boznański A. Genetic polymorphisms in pattern recognition receptors are associated with allergic diseases through gene-gene interactions. Adv Clin Exp Med. 2019;28(8):1087–1094. doi:10.17219/acem/104538
  • Taha SI, Shata AK, Baioumy SA, et al. Toll-like receptor 4 polymorphisms (896A/G and 1196C/T) as an indicator of COVID-19 severity in a convenience sample of Egyptian patients. J Inflamm Res. 2021;14:6293–6303. doi:10.2147/JIR.S343246
  • He S, Chen J. [Correlation between TLR4 gene polymorphisms and allergic rhinitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(13):991–994. Chinese. doi:10.13201/j.issn.1001-1781.2017.13.005
  • Sedaghat AR, Phipatanakul W, Cunningham MJ. Prevalence of and associations with allergic rhinitis in children with chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol. 2014;78(2):343–347. doi:10.1016/j.ijporl.2013.12.006
  • Feng J, Zhang C, Wang Z, Li Q, Li J, Wang H. Association between CD14 gene promoter polymorphisms with serum total-IgE and eosinophil levels in atopic and non-atopic asthma patients in a Chinese Han population. J Asthma. 2016;53(2):119–124. doi:10.3109/02770903.2015.1080267
  • Leynaert B, Guilloud-Bataille M, Soussan D, et al. Association between farm exposure and atopy, according to the CD14 C-159T polymorphism. J Allergy Clin Immunol. 2006;118(3):658–665. doi:10.1016/j.jaci.2006.06.015
  • O’Donnell AR, Toelle BG, Marks GB, et al. Age-specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years. Am J Respir Crit Care Med. 2004;169(5):615–622. doi:10.1164/rccm.200302-278OC
  • Zhang YN, Li YJ, Li H, Zhou H, Shao XJ. Association of CD14 C159T polymorphism with atopic asthma susceptibility in children from Southeastern China: a case-control study. Genet Mol Res. 2015;14(2):4311–4317. doi:10.4238/2015.April.30.3
  • Sengler C, Haider A, Sommerfeld C, et al. Evaluation of the CD14 C-159 T polymorphism in the German Multicenter Allergy Study cohort. Clin Exp Allergy. 2003;33(2):166–169. doi:10.1046/j.1365-2222.2003.01549.x
  • Nishimura F, Shibasaki M, Ichikawa K, Arinami T, Noguchi E. Failure to find an association between CD14-159C/T polymorphism and asthma: a family-based association test and meta-analysis. Allergol Int. 2006;55(1):55–58. doi:10.2332/allergolint.55.55
  • Dutta S, Mondal P, Saha NC, et al. Role of offending out-door aero-allergen and CD14 C(−159)T polymorphism in development and severity of asthma in a Kolkata patient population. Afr Health Sci. 2017;17(4):1101–1109. doi:10.4314/ahs.v17i4.18
  • Varadaradjalou S, Féger F, Thieblemont N, et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol. 2003;33(4):899–906. doi:10.1002/eji.200323830
  • de Guia RM, Echavez MD, Gaw EL, et al. Multifactor-dimensionality reduction reveals interaction of important gene variants involved in allergy. Int J Immunogenet. 2015;42(3):182–189. doi:10.1111/iji.12200
  • Choi WA, Kang MJ, Kim YJ, et al. Gene-gene interactions between candidate gene polymorphisms are associated with total IgE levels in Korean children with asthma. J Asthma. 2012;49(3):243–252. doi:10.3109/02770903.2012.660294
  • Sozańska B, Blaszczyk M, Pearce N, Cullinan P. Atopy and allergic respiratory disease in rural Poland before and after accession to the European Union. J Allergy Clin Immunol. 2014;133(5):1347–1353. doi:10.1016/j.jaci.2013.10.035
  • Ege MJ, von Mutius E. Atopy: a mirror of environmental changes? J Allergy Clin Immunol. 2014;133(5):1354–1355. doi:10.1016/j.jaci.2014.01.031
  • Wu YC, James LK, Vander Heiden JA, et al. Influence of seasonal exposure to grass pollen on local and peripheral blood IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol. 2014;134(3):604–612. doi:10.1016/j.jaci.2014.07.010
  • Silverberg JI, Braunstein M, Lee-Wong M. Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States. J Allergy Clin Immunol. 2015;135(2):463–469. doi:10.1016/j.jaci.2014.08.003
  • Baxi SN, Portnoy JM, Larenas-Linnemann D, Phipatanakul W, Environmental Allergens Workgroup. Exposure and health effects of fungi on humans. J Allergy Clin Immunol Pract. 2016;4(3):396–404. doi:10.1016/j.jaip.2016.01.008
  • Hägerhed-Engman L, Sigsgaard T, Samuelson I, Sundell J, Janson S, Bornehag CG. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children. Indoor Air. 2009;19(3):184–192. doi:10.1111/j.1600-0668.2008.00573.x
  • Chen HI, Lin YT, Jung CR, Hwang BF. Interaction between catalase gene promoter polymorphisms and indoor environmental exposure in childhood allergic rhinitis. Epidemiology. 2017;28(Suppl 1):S126–S132. doi:10.1097/EDE.0000000000000741
  • Hart PH, Norval M, Byrne SN, Rhodes LE. Exposure to ultraviolet radiation in the modulation of human diseases. Annu Rev Pathol. 2019;14(1):55–81. doi:10.1146/annurev-pathmechdis-012418-012809
  • Gorman S, McGlade JP, Lambert MJ, Strickland DH, Thomas JA, Hart PH. UV exposure and protection against allergic airways disease. Photochem Photobiol Sci. 2010;9(4):571–577. doi:10.1039/b9pp00136k
  • Rueter K, Jones AP, Siafarikas A, Chivers P, Prescott SL, Palmer DJ. The influence of sunlight exposure and sun protecting behaviours on allergic outcomes in early childhood. Int J Environ Res Public Health. 2021;18(10):5429. doi:10.3390/ijerph18105429
  • Martens PJ, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s effect on immune function. Nutrients. 2020;12(5):1248. doi:10.3390/nu12051248
  • Tian HQ, Cheng L. The role of vitamin D in allergic rhinitis. Asia Pac Allergy. 2017;7(2):65–73. doi:10.5415/apallergy.2017.7.2.65
  • Eller E, Roll S, Chen CM, et al. Meta-analysis of determinants for pet ownership in 12 European birth cohorts on asthma and allergies: a GA2LEN initiative. Allergy. 2008;63(11):1491–1498. doi:10.1111/j.1398-9995.2008.01790.x
  • Takkouche B, González-Barcala FJ, Etminan M, Fitzgerald M. Exposure to furry pets and the risk of asthma and allergic rhinitis: a meta-analysis. Allergy. 2008;63(7):857–864. doi:10.1111/j.1398-9995.2008.01732.x
  • Eder W, Klimecki W, Yu L, et al. Opposite effects of CD 14/-260 on serum IgE levels in children raised in different environments. J Allergy Clin Immunol. 2005;116(3):601–607. doi:10.1016/j.jaci.2005.05.003
  • Svanes C, Heinrich J, Jarvis D, et al. Pet-keeping in childhood and adult asthma and hay fever: European community respiratory health survey. J Allergy Clin Immunol. 2003;112(2):289–300. doi:10.1067/mai.2003.1596