88
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Blood Coral Polysaccharide Helps Prevent D-Gal/LPS-Induced Acute Liver Failure in Mice

, , , , ORCID Icon &
Pages 4499-4513 | Received 02 Apr 2022, Accepted 30 Jul 2022, Published online: 08 Aug 2022

References

  • Liu Q. Role of cytokines in the pathophysiology of acute on-chronic liver failure. Blood Purif. 2009;28(4):331–341. doi:10.1159/000232940
  • Wu D, Lu J, Zheng Y, Zhou Z, Shan Q, Ma D. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem. 2008;90(1):19–27. doi:10.1016/j.nlm.2008.01.010
  • Bucala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol. 1992;23:1–34.
  • Remick D, Ward P. Evaluation of endotoxin models for the study of sepsis. Shock. 2005;24(Supplement 1):7–11. doi:10.1097/01.shk.0000191384.34066.85
  • Liu X, Robinson D, Veach R, et al. Peptide-directed suppression of a pro-inflammatory cytokine response. J Biol Chem. 2000;275(22):16774–16778. doi:10.1074/jbc.C000083200
  • Kosai K, Matsumoto K, Funakoshi H, Nakamura T. Hepatocyte growth factor prevents endotoxin‐induced lethal hepatic failure in mice. Hepatology. 1999;30(1):151–159. doi:10.1002/hep.510300102
  • Jha R, Xu Z. Biomedical compounds from marine organisms. Mar Drugs. 2004;2(3):123–146. doi:10.3390/md203123
  • Cui Y, Liu X, Li S, et al. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int J Biol Macromol. 2018;117:256–263. doi:10.1016/j.ijbiomac.2018.05.134
  • Zhong Q, Wei B, Wang S, et al. The antioxidant activity of polysaccharides derived from marine organisms: an overview. Mar Drugs. 2019;17(12):674. doi:10.3390/md17120674
  • Fleita D, El-Sayed M, Rifaat D. Evaluation of the antioxidant activity of enzymatically-hydrolyzed sulfated polysaccharides extracted from red algae; Pterocladia capillacea. LWT-Food Sci Technol. 2015;63(2):1236–1244. doi:10.1016/j.lwt.2015.04.024
  • Assreuy A, Gomes D, da Silva S, et al. Biological effects of a sulfated-polysaccharide isolated from the marine red algae champia feldmannii. Biol Pharm Bull. 2008;31(4):691–695. doi:10.1248/bpb.31.691
  • da Silva Chagas F, Lima G, Dos Santos V, et al. Sulfated polysaccharide from the red algae Gelidiella acerosa: anticoagulant, antiplatelet and antithrombotic effects. Int J Biol Macromol. 2020;159:415–421. doi:10.1016/j.ijbiomac.2020.05.012
  • Khotimchenko M, Tiasto V, Kalitnik A, et al. Antitumor potential of carrageenans from marine red algae. Carbohydr Polym. 2020;246:116568. doi:10.1016/j.carbpol.2020.116568
  • Jiang Y, Zhou W, Zhang X, Wang Y, Yang D, Li S. Protective effect of blood cora polysaccharides on H9c2 rat heart cells injury induced by oxidative stress by activating Nrf2/HO-1 signal pathway. Front Nutritr. 2021;8:73. doi:10.3389/fnut.2021.632161
  • Sasu A, Herman H, Folk A, et al. Protective effects of silymarin on epirubicin -induced hepatotoxicity in mice. Stud Univ Vasile Goldis Arad Ser Stiint Vietii. 2016;26:305.
  • Pu Y, Yang Z, Mo X. Protective effect of luteolin on D-Galactosamine(D-Gal)/Lipopolysaccharide (LPS) induced hepatic injury by in mice. Biomed Res Int. 2021;2021:2252705. doi:10.1155/2021/2252705
  • Li C, He Y, Yang Y, et al. Antioxidant and inflammatory effects of Nelumbo nucifera gaertn. Leaves Oxid Med Cell Longev. 2021;2021:8375961.
  • Knodell R, Ishak K, Black W, et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology. 1981;1(5):431–435. doi:10.1002/hep.1840010511
  • Carson M, Clarke S. Bioactive compounds from marine organisms: potential for bone growth and healing. Mar Drugs. 2018;16(9):340. doi:10.3390/md16090340
  • Carte B. Biomedical potential of marine natural products. Bioscience. 1996;46:271–286.
  • Jayawardena T, Wang L, Sanjeewa K, Kang S, Lee J, Jeon Y. Antioxidant potential of sulfated polysaccharides from Padina boryana; Protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar Drugs. 2020;18(4):212. doi:10.3390/md18040212
  • Dhargalkar V, Verlecar X. Southern Ocean seaweeds: a resource for exploration in food and drugs. Aquaculture. 2009;287(3–4):229–242. doi:10.1016/j.aquaculture.2008.11.013
  • Rodrigues D, Freitas A, Pereira L, et al. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015;183:197–207. doi:10.1016/j.foodchem.2015.03.057
  • Zhou F, Tang H, Sun H, Zheng Z, Ouyang J. Progress in biotransformation of red algal polysaccharides for industrial utilization. Food Sci. 2021;42:326–334.
  • O’ Sullivan L, Murphy B, McLoughlin P, et al. Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs. 2010;8(7):2038–2064. doi:10.3390/md8072038
  • Wang F, Kong L, Xie Y, et al. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J Food Biochem. 2021;45:e13661. doi:10.1111/jfbc.13661
  • Di T, Chen G, Sun Y, Ou S, Zeng X, Ye H. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J Funct Foods. 2017;28:64–75. doi:10.1016/j.jff.2016.11.005
  • Betrapally N, Gillevet P, Bajaj J. Gut microbiome and liver disease. Transl Res. 2017;179:49–59. doi:10.1016/j.trsl.2016.07.005
  • Wang J, Wang H, Li L, et al. Development of a rat model of D-galactosamine/lipopolysaccharide induced hepatorenal syndrome. World J Gastroenterol. 2015;21(34):9927–9935. doi:10.3748/wjg.v21.i34.9927
  • Zhu Y, Tian D. Experimental research of the effect of endotoxin on glucose metabolism in SD rats model with acute hepatic failure. J Intern Intensive Med. 2006;12:119–121.
  • Kemelo M, Wojnarova L, Canová N, Farghali H. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection. Physiol Res. 2014;63:615. doi:10.33549/physiolres.932761
  • Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–146. doi:10.1007/s001250051591
  • Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010;3(2):101–108. doi:10.4161/oxim.3.2.11148
  • Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. Lancet. 2010;376(9736):190–201. doi:10.1016/S0140-6736(10)60274-7
  • Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem. 2002;13(8):444–461. doi:10.1016/S0955-2863(02)00205-X
  • Zelko I, Mariani T, Folz R. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337–349. doi:10.1016/S0891-5849(02)00905-X
  • Tehrani H, Moosavi-Movahedi A. Catalase and its mysteries. Prog Biophys Mol Biol. 2018;140:5–12. doi:10.1016/j.pbiomolbio.2018.03.001
  • Farghali H, Černý D, Kameníková L, et al. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide. 2009;21(3–4):216–225. doi:10.1016/j.niox.2009.09.004
  • Lian L, Wu Y, Wan Y, Li X, Xie W, Nan J. Anti-apoptotic activity of gentiopicroside in d-galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. Chem Biol Interact. 2010;188(1):127–133. doi:10.1016/j.cbi.2010.06.004
  • Ma X, Deng D, Chen W. Inhibitors and Activators of SOD, GSH-Px, and CAT. Enzyme Inhib Activatators. 2017;29:207–224.
  • Cui X, Gong J, Han H, et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of humans biospecimens. J Thorac Dis. 2018;10(5):3088. doi:10.21037/jtd.2018.05.92
  • Mohamadi-Zarch S, Baluchnejadmojarad T, Nourabadi D, Khanizadeh A, Roghani M. Protective effect of diosgenin on LPS/D-Gal-induced acute liver failure in C57BL/6 mice. Microb Pathog. 2020;146:104243. doi:10.1016/j.micpath.2020.104243
  • Choi W, Shin P, Lee J, Kim G. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell Immunol. 2012;280(2):164–170. doi:10.1016/j.cellimm.2012.12.007
  • Josephs M, Bahjat F, Fukuzuka K, et al. Lipopolysaccharide and D-galactosamine-induced hepatic injury is mediated by TNF-α and not by Fas ligand. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1196–R1201. doi:10.1152/ajpregu.2000.278.5.R1196
  • Silverstein R. D-galactosamine lethality model: scope and limitations. J Endotoxin Res. 2004;10(3):147–162. doi:10.1179/096805104225004879
  • Nowak M, Gaines G, Rosenberg J, et al. LPS-induced liver injury ind-galactosamine-sensitized mice requires secreted TNF-α and the TNF-p55 receptor. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1202–R1209. doi:10.1152/ajpregu.2000.278.5.R1202
  • Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol. 2019;72:348–357. doi:10.1016/j.intimp.2019.04.005
  • Kuhla A, Eipel C, Abshagen K, Siebert N, Menger M, Vollmar B. Role of the perforin/granzyme cell death pathway in D-Gal/LPS-induced inflammatory liver injury. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1069–G1076. doi:10.1152/ajpgi.90689.2008
  • Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol. 2019;15(8):491–501. doi:10.1038/s41584-019-0243-5
  • Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microb Infect. 2020;9(1):1123–1130. doi:10.1080/22221751.2020.1770129
  • Karki R, Sharma B, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. 2021;184(1):149–168. doi:10.1016/j.cell.2020.11.025
  • Yanagido A, Ueno M, Jiang Z, et al. Increase in anti-inflammatory activities of radical-degraded porphyrans isolated from discolored nori (Pyropia yezoensis). Int J Biol Macromol. 2018;117:78–86. doi:10.1016/j.ijbiomac.2018.05.146
  • Litman G, Rast J, Shamblott M, et al. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol. 1993;10(1):60–72. doi:10.1093/oxfordjournals.molbev.a040000
  • Keusch G. The history of nutrition: malnutrition, infection and immunity. J Nutr. 2003;133(1):336S–340S. doi:10.1093/jn/133.1.336S
  • Zhao X, Jiao G, Yang Y, et al. Structure and immunomodulatory activity of a sulfated agarose with pyruvate and xylose substitutes from Polysiphonia senticulosa Harvey. Carbohydr Polym. 2017;176:29–37. doi:10.1016/j.carbpol.2017.08.065
  • Han J, Liu B, Liu Q, et al. Red algae sulfated polysaccharides effervescent tablets attenuated ovalbumin-induced anaphylaxis by upregulating regulatory T cells in mouse models. J Agric Food Chem. 2019;67(43):11911–11921. doi:10.1021/acs.jafc.9b03132
  • Tang J, Xu L, Zeng Y, Gong F. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol. 2021;91:107272. doi:10.1016/j.intimp.2020.107272
  • Levy-Ontman O, Huleihel M, Hamias R, Wolak T, Paran E. An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis. 2017;264:11–18. doi:10.1016/j.atherosclerosis.2017.07.017
  • Paixão J, Dinis T, Almeida L. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem Biol Interact. 2012;199(3):192–200. doi:10.1016/j.cbi.2012.08.013
  • Appleton I, Tomlinson A, Willoughby D. Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Adv Pharmacol. 1996;35:27–77. doi:10.1016/s1054-3589(08)60274-4